دورية أكاديمية

Toward Isolation of Salient Features in Stable Boundary Layer Wind Fields that Influence Loads on Wind Turbines

التفاصيل البيبلوغرافية
العنوان: Toward Isolation of Salient Features in Stable Boundary Layer Wind Fields that Influence Loads on Wind Turbines
المؤلفون: Jinkyoo Park, Lance Manuel, Sukanta Basu
المصدر: Energies, Vol 8, Iss 4, Pp 2977-3012 (2015)
بيانات النشر: MDPI AG, 2015.
سنة النشر: 2015
المجموعة: LCC:Technology
مصطلحات موضوعية: atmospheric turbulence, large-eddy simulation, stable boundary layer, wind shear, Technology
الوصف: Neutral boundary layer (NBL) flow fields, commonly used in turbine load studies and design, are generated using spectral procedures in stochastic simulation. For large utility-scale turbines, stable boundary layer (SBL) flow fields are of great interest because they are often accompanied by enhanced wind shear, wind veer, and even low-level jets (LLJs). The generation of SBL flow fields, in contrast to simpler stochastic simulation for NBL, requires computational fluid dynamics (CFD) procedures to capture the physics and noted characteristics—such as shear and veer—that are distinct from those seen in NBL flows. At present, large-eddy simulation (LES) is the most efficient CFD procedure for SBL flow field generation and related wind turbine loads studies. Design standards, such as from the International Electrotechnical Commission (IEC), provide guidance albeit with simplifying assumptions (one such deals with assuming constant variance of turbulence over the rotor) and recommend standard target turbulence power spectra and coherence functions to allow NBL flow field simulation. In contrast, a systematic SBL flow field simulation procedure has not been offered for design or for site assessment. It is instructive to compare LES-generated SBL flow fields with stochastic NBL flow fields and associated loads which we evaluate for a 5-MW turbine; in doing so, we seek to isolate distinguishing characteristics of wind shear, wind veer, and turbulence variation over the rotor plane in the alternative flow fields and in the turbine loads. Because of known differences in NBL-stochastic and SBL-LES wind fields but an industry preference for simpler stochastic simulation in design practice, this study investigates if one can reproduce stable atmospheric conditions using stochastic approaches with appropriate corrections for shear, veer, turbulence, etc. We find that such simple tuning cannot consistently match turbine target SBL load statistics, even though this is possible in some cases. As such, when there is a need to consider different stability regimes encountered by a wind turbine, easy solutions do not exist and large-eddy simulation at least for the stable boundary layer is needed.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1073
Relation: http://www.mdpi.com/1996-1073/8/4/2977; https://doaj.org/toc/1996-1073
DOI: 10.3390/en8042977
URL الوصول: https://doaj.org/article/0ef5438b200048a38224027b00ef5fbe
رقم الأكسشن: edsdoj.0ef5438b200048a38224027b00ef5fbe
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961073
DOI:10.3390/en8042977