دورية أكاديمية

Characteristics of tiger moth (Erebidae: Arctiinae) anti-bat sounds can be predicted from tymbal morphology

التفاصيل البيبلوغرافية
العنوان: Characteristics of tiger moth (Erebidae: Arctiinae) anti-bat sounds can be predicted from tymbal morphology
المؤلفون: Nicolas J. Dowdy, William E. Conner
المصدر: Frontiers in Zoology, Vol 16, Iss 1, Pp 1-11 (2019)
بيانات النشر: BMC, 2019.
سنة النشر: 2019
المجموعة: LCC:Zoology
مصطلحات موضوعية: Bioacoustics, Lepidoptera, Anti-predator defense, Predictive modeling, Collections-based research, Zoology, QL1-991
الوصف: Abstract Background Acoustic signals are used by many animals to transmit information. Variation in the acoustic characteristics of these signals often covaries with morphology and can relay information about an individual’s fitness, sex, species, and/or other characteristics important for both mating and defense. Tiger moths (Lepidoptera: Erebidae: Arctiinae) use modified cuticular plates called “tymbal organs” to produce ultrasonic clicks which can aposematically signal their toxicity, mimic the signals of other species, or, in some cases, disrupt bat echolocation. The morphology of the tymbal organs and the sounds they produce vary greatly between species, but it is unclear how the variation in morphology gives rise to the variation in acoustic characteristics. This is the first study to determine how the morphological features of tymbals can predict the acoustic characteristics of the signals they produce. Results We show that the number of striations on the tymbal surface (historically known as “microtymbals”) and, to a lesser extent, the ratio of the projected surface area of the tymbal to that of the thorax have a strong, positive correlation with the number of clicks a moth produces per unit time. We also found that some clades have significantly different regression coefficients, and thus the relationship between microtymbals and click rate is also dependent on the shared ancestry of different species. Conclusions Our predictive model allows the click rates of moths to be estimated using preserved material (e.g., from museums) in cases where live specimens are unavailable. This has the potential to greatly accelerate our understanding of the distribution of sound production and acoustic anti-bat strategies employed by tiger moths. Such knowledge will generate new insights into the evolutionary history of tiger moth anti-predator defenses on a global scale.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1742-9994
Relation: https://doaj.org/toc/1742-9994
DOI: 10.1186/s12983-019-0345-6
URL الوصول: https://doaj.org/article/106a03cca6a64169908a37e1824eb48e
رقم الأكسشن: edsdoj.106a03cca6a64169908a37e1824eb48e
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17429994
DOI:10.1186/s12983-019-0345-6