دورية أكاديمية

Remarkable Reduction in IG with an Explicit Investigation of the Leakage Conduction Mechanisms in a Dual Surface-Modified Al2O3/SiO2 Stack Layer AlGaN/GaN MOS-HEMT

التفاصيل البيبلوغرافية
العنوان: Remarkable Reduction in IG with an Explicit Investigation of the Leakage Conduction Mechanisms in a Dual Surface-Modified Al2O3/SiO2 Stack Layer AlGaN/GaN MOS-HEMT
المؤلفون: Soumen Mazumder, Parthasarathi Pal, Kuan-Wei Lee, Yeong-Her Wang
المصدر: Materials, Vol 15, Iss 24, p 9067 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Technology
LCC:Electrical engineering. Electronics. Nuclear engineering
LCC:Engineering (General). Civil engineering (General)
LCC:Microscopy
LCC:Descriptive and experimental mechanics
مصطلحات موضوعية: Al2O3/SiO2, AlGaN/GaN, MOS-HEMT, post-gate annealing (PGA), Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
الوصف: We demonstrated the performance of an Al2O3/SiO2 stack layer AlGaN/GaN metal–oxide semiconductor (MOS) high-electron-mobility transistor (HEMT) combined with a dual surface treatment that used tetramethylammonium hydroxide (TMAH) and hydrochloric acid (HCl) with post-gate annealing (PGA) modulation at 400 °C for 10 min. A remarkable reduction in the reverse gate leakage current (IG) up to 1.5×10−12 A/mm (@ VG = −12 V) was observed in the stack layer MOS-HEMT due to the combined treatment. The performance of the dual surface-treated MOS–HEMT was significantly improved, particularly in terms of hysteresis, gate leakage, and subthreshold characteristics, with optimized gate annealing treatment. In addition, an organized gate leakage conduction mechanism in the AlGaN/GaN MOS–HEMT with the Al2O3/SiO2 stack gate dielectric layer was investigated before and after gate annealing treatment and compared with the conventional Schottky gate. The conduction mechanism in the reverse gate bias was Poole–Frankel emission for the Schottky-gate HEMT and the MOS–HEMT before annealing. The dominant conduction mechanism was ohmic/Poole-Frankel at low/medium forward bias. Meanwhile, gate leakage was governed by the hopping conduction mechanism in the MOS–HEMT without gate annealing modulation at a higher forward bias. After post-gate annealing (PGA) treatment, however, the leakage conduction mechanism was dominated by trap-assisted tunneling at the low to medium forward bias region and by Fowler–Nordheim tunneling at the higher forward bias region. Moreover, a decent product of maximum oscillation frequency and gate length (fmax × LG) was found to reach 27.16 GHz∙µm for the stack layer MOS–HEMT with PGA modulation. The dual surface-treated Al2O3/SiO2 stack layer MOS–HEMT with PGA modulation exhibited decent performance with an IDMAX of 720 mA/mm, a peak extrinsic transconductance (GMMAX) of 120 mS/mm, a threshold voltage (VTH) of −4.8 V, a higher ION/IOFF ratio of approximately 1.2×109, a subthreshold swing of 82 mV/dec, and a cutoff frequency(ft)/maximum frequency of (fmax) of 7.5/13.58 GHz.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1944
Relation: https://www.mdpi.com/1996-1944/15/24/9067; https://doaj.org/toc/1996-1944
DOI: 10.3390/ma15249067
URL الوصول: https://doaj.org/article/12671330f6da4847835283e43e393bdd
رقم الأكسشن: edsdoj.12671330f6da4847835283e43e393bdd
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961944
DOI:10.3390/ma15249067