دورية أكاديمية

Impact of mineral dust on shortwave and longwave radiation: evaluation of different vertically resolved parameterizations in 1-D radiative transfer computations

التفاصيل البيبلوغرافية
العنوان: Impact of mineral dust on shortwave and longwave radiation: evaluation of different vertically resolved parameterizations in 1-D radiative transfer computations
المؤلفون: M. J. Granados-Muñoz, M. Sicard, R. Román, J. A. Benavent-Oltra, R. Barragán, G. Brogniez, C. Denjean, M. Mallet, P. Formenti, B. Torres, L. Alados-Arboledas
المصدر: Atmospheric Chemistry and Physics, Vol 19, Pp 523-542 (2019)
بيانات النشر: Copernicus Publications, 2019.
سنة النشر: 2019
المجموعة: LCC:Physics
LCC:Chemistry
مصطلحات موضوعية: Physics, QC1-999, Chemistry, QD1-999
الوصف: Aerosol radiative properties are investigated in southeastern Spain during a dust event on 16–17 June 2013 in the framework of the ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) campaign. Particle optical and microphysical properties from ground-based sun/sky photometer and lidar measurements, as well as in situ measurements on board the SAFIRE ATR 42 French research aircraft, are used to create a set of different levels of input parameterizations, which feed the 1-D radiative transfer model (RTM) GAME (Global Atmospheric ModEl). We consider three datasets: (1) a first parameterization based on the retrievals by an advanced aerosol inversion code (GRASP; Generalized Retrieval of Aerosol and Surface Properties) applied to combined photometer and lidar data, (2) a parameterization based on the photometer columnar optical properties and vertically resolved lidar retrievals with the two-component Klett–Fernald algorithm, and (3) a parameterization based on vertically resolved optical and microphysical aerosol properties measured in situ by the aircraft instrumentation. Once retrieved, the outputs of the RTM in terms of both shortwave and longwave radiative fluxes are compared against ground and in situ airborne measurements. In addition, the outputs of the model in terms of the aerosol direct radiative effect are discussed with respect to the different input parameterizations. Results show that calculated atmospheric radiative fluxes differ no more than 7 % from the measured ones. The three parameterization datasets produce a cooling effect due to mineral dust both at the surface and the top of the atmosphere. Aerosol radiative effects with differences of up to 10 W m−2 in the shortwave spectral range (mostly due to differences in the aerosol optical depth) and 2 W m−2 for the longwave spectral range (mainly due to differences in the aerosol optical depth but also to the coarse mode radius used to calculate the radiative properties) are obtained when comparing the three parameterizations. The study reveals the complexity of parameterizing 1-D RTMs as sizing and characterizing the optical properties of mineral dust is challenging. The use of advanced remote sensing data and processing, in combination with closure studies on the optical and microphysical properties from in situ aircraft measurements when available, is recommended.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1680-7316
1680-7324
Relation: https://www.atmos-chem-phys.net/19/523/2019/acp-19-523-2019.pdf; https://doaj.org/toc/1680-7316; https://doaj.org/toc/1680-7324
DOI: 10.5194/acp-19-523-2019
URL الوصول: https://doaj.org/article/a137c291232442fda4ac46c42cafc83b
رقم الأكسشن: edsdoj.137c291232442fda4ac46c42cafc83b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16807316
16807324
DOI:10.5194/acp-19-523-2019