دورية أكاديمية

Recent progress on quantum frequency standards at BIRMM

التفاصيل البيبلوغرافية
العنوان: Recent progress on quantum frequency standards at BIRMM
المؤلفون: Xiaobo Xue, Tiezhong Zhou, Nuanrang Wang, Shengkang Zhang, Jun Ge
المصدر: Frontiers in Physics, Vol 10 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Physics
مصطلحات موضوعية: time and frequency metrology, positioning navigation and timing, quantum frequency standard, optical clock, active hydrogen maser, ion microwave clock, Physics, QC1-999
الوصف: Quantum frequency standards are crucial for time measurement, satellite navigation, telecommunication, and other essential applications. Beijing Institute of Radio Metrology and Measurement (BIRMM) has been working on quantum frequency standards and their applications for tens of years. This paper introduces the latest progress on quantum frequency standards at BIRMM, including a calcium optical clock, an active hydrogen maser, and a mercury ion microwave clock. Based on the 1S0-3P1 transition of calcium atoms, a transportable optical clock prototype is built with a stability of 8 × 10–15 at 1 s. A compact active hydrogen maser has been developed for the Chinese space station. It will be used for scientific research such as examining Einstein’s theory of general relativity and has just been lunched. The preliminary frequency stability of the maser is 1.27 × 10–15 at 10000 s. Additionally, a prototype mercury ion microwave clock is developed using the hyperfine transition between 62S1/2, F = 0 and 62S1/2, F = 1. The trapped Hg+ ions are pumped by mercury discharge lamps and cooled by Helium gas. The measured clock transition linewidth is about 1 Hz, and frequency stability of 4 × 10–13 at 1 s and 4 × 10–14 at 1000 s is achieved.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-424X
Relation: https://www.frontiersin.org/articles/10.3389/fphy.2022.971036/full; https://doaj.org/toc/2296-424X
DOI: 10.3389/fphy.2022.971036
URL الوصول: https://doaj.org/article/193afc727aa14eb593369b0ba2d89cd8
رقم الأكسشن: edsdoj.193afc727aa14eb593369b0ba2d89cd8
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2296424X
DOI:10.3389/fphy.2022.971036