دورية أكاديمية

Differential evolution-based neural architecture search for brain vessel segmentation

التفاصيل البيبلوغرافية
العنوان: Differential evolution-based neural architecture search for brain vessel segmentation
المؤلفون: Zeki Kuş, Berna Kiraz, Tuğçe Koçak Göksu, Musa Aydın, Esra Özkan, Atay Vural, Alper Kiraz, Burhanettin Can
المصدر: Engineering Science and Technology, an International Journal, Vol 46, Iss , Pp 101502- (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Engineering (General). Civil engineering (General)
مصطلحات موضوعية: Attention U-Net, Brain vessel segmentation, Differential evolution, Neural architecture search, U-Net, Engineering (General). Civil engineering (General), TA1-2040
الوصف: Brain vasculature analysis is critical in developing novel treatment targets for neurodegenerative diseases. Such an accurate analysis cannot be performed manually but requires a semi-automated or fully-automated approach. Deep learning methods have recently proven indispensable for the automated segmentation and analysis of medical images. However, optimizing a deep learning network architecture is another challenge. Manually selecting deep learning network architectures and tuning their hyper-parameters requires a lot of expertise and effort. To solve this problem, neural architecture search (NAS) approaches that explore more efficient network architectures with high segmentation performance have been proposed in the literature. This study introduces differential evolution-based NAS approaches in which a novel search space is proposed for brain vessel segmentation. We select two architectures that are frequently used for medical image segmentation, i.e. U-Net and Attention U-Net, as baselines for NAS optimizations. The conventional differential evolution and the opposition-based differential evolution with novel search space are employed as search methods in NAS. Furthermore, we perform ablation studies and evaluate the effects of specific loss functions, model pruning, threshold selection and generalization performance on the proposed models. The experiments are conducted on two datasets providing 335 single-channel 8-bit gray-scale images. These datasets are a public volumetric cerebrovascular system dataset (vesseINN) and our own dataset called KUVESG. The proposed NAS approaches, namely UNAS-Net and Attention UNAS-Net architectures, yield better segmentation performance in terms of different segmentation metrics. More specifically, UNAS-Net with differential evolution reveals high dice score/sensitivity values of 79.57/81.48, respectively. Moreover, they provide shorter inference times by a factor of 9.15 than the baseline methods.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2215-0986
Relation: http://www.sciencedirect.com/science/article/pii/S2215098623001805; https://doaj.org/toc/2215-0986
DOI: 10.1016/j.jestch.2023.101502
URL الوصول: https://doaj.org/article/1a94dc2207174d9b83aaabfdcd876ae4
رقم الأكسشن: edsdoj.1a94dc2207174d9b83aaabfdcd876ae4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22150986
DOI:10.1016/j.jestch.2023.101502