دورية أكاديمية

Investigation of the Dynamics of a 2-DoF Actuation Unit Cell for a Cooperative Electrostatic Actuation System

التفاصيل البيبلوغرافية
العنوان: Investigation of the Dynamics of a 2-DoF Actuation Unit Cell for a Cooperative Electrostatic Actuation System
المؤلفون: Almothana Albukhari, Ulrich Mescheder
المصدر: Actuators, Vol 10, Iss 10, p 276 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Materials of engineering and construction. Mechanics of materials
LCC:Production of electric energy or power. Powerplants. Central stations
مصطلحات موضوعية: cooperative actuators, inchworm motor, electrostatic actuator, MEMS, FEM, coupled-field modeling, Materials of engineering and construction. Mechanics of materials, TA401-492, Production of electric energy or power. Powerplants. Central stations, TK1001-1841
الوصف: The mechanism of the inchworm motor, which overcomes the intrinsic displacement and force limitations of MEMS electrostatic actuators, has undergone constant development in the past few decades. In this work, the electrostatic actuation unit cell (AUC) that is designed to cooperate with many other counterparts in a novel concept of a modular-like cooperative actuator system is examined. First, the cooperative system is briefly discussed. A simplified analytical model of the AUC, which is a 2-Degree-of-Freedom (2-DoF) gap-closing actuator (GCA), is presented, taking into account the major source of dissipation in the system, the squeeze-film damping (SQFD). Then, the results of a series of coupled-field numerical simulation studies by the Finite Element Method (FEM) on parameterized models of the AUC are shown, whereby sensible comparisons with available analytical models from the literature are made. The numerical simulations that focused on the dynamic behavior of the AUC highlighted the substantial influence of the SQFD on the pull-in and pull-out times, and revealed how these performance characteristics are considerably determined by the structure’s height. It was found that the pull-out time is the critical parameter for the dynamic behavior of the AUC, and that a larger damping profile significantly shortens the actuator cycle time as a consequence.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2076-0825
Relation: https://www.mdpi.com/2076-0825/10/10/276; https://doaj.org/toc/2076-0825
DOI: 10.3390/act10100276
URL الوصول: https://doaj.org/article/c1b6428daf8a4a98ad08e334fc196529
رقم الأكسشن: edsdoj.1b6428daf8a4a98ad08e334fc196529
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20760825
DOI:10.3390/act10100276