دورية أكاديمية

XGBoost Prediction Model Optimized with Bayesian for the Compressive Strength of Eco-Friendly Concrete Containing Ground Granulated Blast Furnace Slag and Recycled Coarse Aggregate

التفاصيل البيبلوغرافية
العنوان: XGBoost Prediction Model Optimized with Bayesian for the Compressive Strength of Eco-Friendly Concrete Containing Ground Granulated Blast Furnace Slag and Recycled Coarse Aggregate
المؤلفون: Salwa R. Al-Taai, Noralhuda M. Azize, Zainab Abdulrdha Thoeny, Hamza Imran, Luís F. A. Bernardo, Zainab Al-Khafaji
المصدر: Applied Sciences, Vol 13, Iss 15, p 8889 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
مصطلحات موضوعية: machine learning, eco-friendly concrete, compressive strength, XGBoost, Bayesian optimization, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
الوصف: The construction industry has witnessed a substantial increase in the demand for eco-friendly and sustainable materials. Eco-friendly concrete containing Ground Granulated Blast Furnace Slag (GGBFS) and Recycled Coarse Aggregate (RCA) is such a material, which can contribute to a reduction in waste and promote environmental sustainability. Compressive strength is a crucial parameter in evaluating the performance of concrete. However, predicting the compressive strength of concrete containing GGBFS and RCA can be challenging. This study presents a novel XGBoost (eXtreme Gradient Boosting) prediction model for the compressive strength of eco-friendly concrete containing GGBFS and RCA, optimized using Bayesian optimization (BO). The model was trained on a comprehensive dataset consisting of several mix design parameters. The performance of the optimized XGBoost model was assessed using multiple evaluation metrics, including Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and coefficient of determination (R2). These metrics were calculated for both training and testing datasets to evaluate the model’s accuracy and generalization capabilities. The results demonstrated that the optimized XGBoost model outperformed other state-of-the-art machine learning models, such as Support Vector Regression (SVR), and K-nearest neighbors algorithm (KNN), in predicting the compressive strength of eco-friendly concrete containing GGBFS and RCA. An analysis using Partial Dependence Plots (PDP) was carried out to discern the influence of distinct input features on the compressive strength prediction. This PDP analysis highlighted the water-to-binder ratio, the age of the concrete, and the percentage of GGBFS used, as significant factors impacting the compressive strength of the eco-friendly concrete.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2076-3417
Relation: https://www.mdpi.com/2076-3417/13/15/8889; https://doaj.org/toc/2076-3417
DOI: 10.3390/app13158889
URL الوصول: https://doaj.org/article/1f9c32b9099e4260b9882c02fa525b9a
رقم الأكسشن: edsdoj.1f9c32b9099e4260b9882c02fa525b9a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20763417
DOI:10.3390/app13158889