دورية أكاديمية

Evaluation of 2D-/3D-Feet-Detection Methods for Semi-Autonomous Powered Wheelchair Navigation

التفاصيل البيبلوغرافية
العنوان: Evaluation of 2D-/3D-Feet-Detection Methods for Semi-Autonomous Powered Wheelchair Navigation
المؤلفون: Cristian Vilar Giménez, Silvia Krug, Faisal Z. Qureshi, Mattias O’Nils
المصدر: Journal of Imaging, Vol 7, Iss 12, p 255 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Computer applications to medicine. Medical informatics
LCC:Electronic computers. Computer science
مصطلحات موضوعية: 3D object recognition, YOLO, YOLO-Tiny, 3DHOG, histogram of oriented gradients, ModelNet40, Photography, TR1-1050, Computer applications to medicine. Medical informatics, R858-859.7, Electronic computers. Computer science, QA75.5-76.95
الوصف: Powered wheelchairs have enhanced the mobility and quality of life of people with special needs. The next step in the development of powered wheelchairs is to incorporate sensors and electronic systems for new control applications and capabilities to improve their usability and the safety of their operation, such as obstacle avoidance or autonomous driving. However, autonomous powered wheelchairs require safe navigation in different environments and scenarios, making their development complex. In our research, we propose, instead, to develop contactless control for powered wheelchairs where the position of the caregiver is used as a control reference. Hence, we used a depth camera to recognize the caregiver and measure at the same time their relative distance from the powered wheelchair. In this paper, we compared two different approaches for real-time object recognition using a 3DHOG hand-crafted object descriptor based on a 3D extension of the histogram of oriented gradients (HOG) and a convolutional neural network based on YOLOv4-Tiny. To evaluate both approaches, we constructed Miun-Feet—a custom dataset of images of labeled caregiver’s feet in different scenarios, with backgrounds, objects, and lighting conditions. The experimental results showed that the YOLOv4-Tiny approach outperformed 3DHOG in all the analyzed cases. In addition, the results showed that the recognition accuracy was not improved using the depth channel, enabling the use of a monocular RGB camera only instead of a depth camera and reducing the computational cost and heat dissipation limitations. Hence, the paper proposes an additional method to compute the caregiver’s distance and angle from the Powered Wheelchair (PW) using only the RGB data. This work shows that it is feasible to use the location of the caregiver’s feet as a control signal for the control of a powered wheelchair and that it is possible to use a monocular RGB camera to compute their relative positions.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2313-433X
Relation: https://www.mdpi.com/2313-433X/7/12/255; https://doaj.org/toc/2313-433X
DOI: 10.3390/jimaging7120255
URL الوصول: https://doaj.org/article/22d59d3ac56b4f968950c7b901b56962
رقم الأكسشن: edsdoj.22d59d3ac56b4f968950c7b901b56962
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2313433X
DOI:10.3390/jimaging7120255