دورية أكاديمية

Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies

التفاصيل البيبلوغرافية
العنوان: Hyperspectral Leaf Area Index and Chlorophyll Retrieval over Forest and Row-Structured Vineyard Canopies
المؤلفون: Luke A. Brown, Harry Morris, Andrew MacLachlan, Francesco D’Adamo, Jennifer Adams, Ernesto Lopez-Baeza, Erika Albero, Beatriz Martínez, Sergio Sánchez-Ruiz, Manuel Campos-Taberner, Antonio Lidón, Cristina Lull, Inmaculada Bautista, Daniel Clewley, Gary Llewellyn, Qiaoyun Xie, Fernando Camacho, Julio Pastor-Guzman, Rosalinda Morrone, Morven Sinclair, Owen Williams, Merryn Hunt, Andreas Hueni, Valentina Boccia, Steffen Dransfeld, Jadunandan Dash
المصدر: Remote Sensing, Vol 16, Iss 12, p 2066 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Science
مصطلحات موضوعية: CCC, CHIME, EnMAP, INFORM, LAI, PRISMA, Science
الوصف: As an unprecedented stream of decametric hyperspectral observations becomes available from recent and upcoming spaceborne missions, effective algorithms are required to retrieve vegetation biophysical and biochemical variables such as leaf area index (LAI) and canopy chlorophyll content (CCC). In the context of missions such as the Environmental Mapping and Analysis Program (EnMAP), Precursore Iperspettrale della Missione Applicativa (PRISMA), Copernicus Hyperspectral Imaging Mission for the Environment (CHIME), and Surface Biology Geology (SBG), several retrieval algorithms have been developed based upon the turbid medium Scattering by Arbitrarily Inclined Leaves (SAIL) radiative transfer model. Whilst well suited to cereal crops, SAIL is known to perform comparatively poorly over more heterogeneous canopies (including forests and row-structured crops). In this paper, we investigate the application of hybrid radiative transfer models, including a modified version of SAIL (rowSAIL) and the Invertible Forest Reflectance Model (INFORM), to such canopies. Unlike SAIL, which assumes a horizontally homogeneous canopy, such models partition the canopy into geometric objects, which are themselves treated as turbid media. By enabling crown transmittance, foliage clumping, and shadowing to be represented, they provide a more realistic representation of heterogeneous vegetation. Using airborne hyperspectral data to simulate EnMAP observations over vineyard and deciduous broadleaf forest sites, we demonstrate that SAIL-based algorithms provide moderate retrieval accuracy for LAI (RMSD = 0.92–2.15, NRMSD = 40–67%, bias = −0.64–0.96) and CCC (RMSD = 0.27–1.27 g m−2, NRMSD = 64–84%, bias = −0.17–0.89 g m−2). The use of hybrid radiative transfer models (rowSAIL and INFORM) reduces bias in LAI (RMSD = 0.88–1.64, NRMSD = 27–64%, bias = −0.78–−0.13) and CCC (RMSD = 0.30–0.87 g m−2, NRMSD = 52–73%, bias = 0.03–0.42 g m−2) retrievals. Based on our results, at the canopy level, we recommend that hybrid radiative transfer models such as rowSAIL and INFORM are further adopted for hyperspectral biophysical and biochemical variable retrieval over heterogeneous vegetation.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-4292
Relation: https://www.mdpi.com/2072-4292/16/12/2066; https://doaj.org/toc/2072-4292
DOI: 10.3390/rs16122066
URL الوصول: https://doaj.org/article/2772d14fee324e7f8c3b727dbafe9f58
رقم الأكسشن: edsdoj.2772d14fee324e7f8c3b727dbafe9f58
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20724292
DOI:10.3390/rs16122066