دورية أكاديمية

Biogenic silver nanoparticles (AgNPs) from Tinosporacordifolia leaves: An effective antibiofilm agent against Staphylococcus aureus ATCC 23235

التفاصيل البيبلوغرافية
العنوان: Biogenic silver nanoparticles (AgNPs) from Tinosporacordifolia leaves: An effective antibiofilm agent against Staphylococcus aureus ATCC 23235
المؤلفون: Sreejita Ghosh, Somdutta Mondol, Dibyajit Lahiri, Moupriya Nag, Tanmay Sarkar, Siddhartha Pati, Soumya Pandit, Abdullah A. Alarfaj, Mohamad Faiz Mohd Amin, Hisham Atan Edinur, Muhammad Rajaei Ahmad Mohd Zain, Rina Rani Ray
المصدر: Frontiers in Chemistry, Vol 11 (2023)
بيانات النشر: Frontiers Media S.A., 2023.
سنة النشر: 2023
المجموعة: LCC:Chemistry
مصطلحات موضوعية: Tinospora cordifolia, phytoextract, green synthesis, biogenic silver nanoparticles, biofilms, Staphylococcus aureus, Chemistry, QD1-999
الوصف: Medicinal plants are long known for their therapeutic applications. Tinospora cordifolia (commonly called gulancha or heart-leaved moonseed plant), a herbaceous creeper widely has been found to have antimicrobial, anti-inflammatory, anti-diabetic, and anti-cancer properties. However, there remains a dearth of reports regarding its antibiofilm activities. In the present study, the anti-biofilm activities of phytoextractof T. cordifolia and the silver nanoparticles made from this phytoextract were tested against the biofilm of S.taphylococcus aureus, one of the major nosocomial infection-producing bacteria taking tetracycline antibiotic as control. Both phytoextract from the leaves of T. cordifolia, and the biogenic AgNPs from the leaf extract of T. cordifolia, were found successful in reducing the biofilm of Staphylococcus aureus. The biogenic AgNPs formed were characterized by UV- Vis spectroscopy, Field emission Scanning Electron Microscopy (FE- SEM), and Dynamic light scattering (DLS) technique. FE- SEM images showed that the AgNPs were of size ranging between 30 and 50 nm and were stable in nature, as depicted by the zeta potential analyzer. MIC values for phytoextract and AgNPs were found to be 180 mg/mL and 150 μg/mL against S. aureusrespectively. The antibiofilm properties of the AgNPs and phytoextract were analyzed using the CV assay and MTT assay for determining the reduction of biofilms. Reduction in viability count and revival of the S. aureus ATCC 23235 biofilm cells were analyzed followed by the enfeeblement of the EPS matrix to quantify the reduction in the contents of carbohydrates, proteins and eDNA. The SEM analyses clearly indicated that although the phytoextracts could destroy the biofilm network of S. aureuscells yet the biogenicallysynthesizedAgNPs were more effective in biofilm disruption. Fourier Transformed Infrared Radiations (FT- IR) analyses revealed that the AgNPs could bring about more exopolysaccharide (EPS) destruction in comparison to the phytoextract. The antibiofilm activities of AgNPs made from the phytoextract were found to be much more effective than the non-conjugated phytoextract, indicating the future prospect of using such particles for combatting biofilm-mediated infections caused by S aureus.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-2646
Relation: https://www.frontiersin.org/articles/10.3389/fchem.2023.1118454/full; https://doaj.org/toc/2296-2646
DOI: 10.3389/fchem.2023.1118454
URL الوصول: https://doaj.org/article/2827fea8bcc043558d2e3c19cada2c26
رقم الأكسشن: edsdoj.2827fea8bcc043558d2e3c19cada2c26
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22962646
DOI:10.3389/fchem.2023.1118454