دورية أكاديمية

Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury

التفاصيل البيبلوغرافية
العنوان: Astrocytic Ephrin-B1 Regulates Synapse Remodeling Following Traumatic Brain Injury
المؤلفون: Angeliki M. Nikolakopoulou, Jordan Koeppen, Michael Garcia, Joshua Leish, Andre Obenaus, Iryna M. Ethell
المصدر: ASN Neuro, Vol 8 (2016)
بيانات النشر: Taylor & Francis, 2016.
سنة النشر: 2016
المجموعة: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
مصطلحات موضوعية: Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
الوصف: Traumatic brain injury (TBI) can result in tissue alterations distant from the site of the initial injury, which can trigger pathological changes within hippocampal circuits and are thought to contribute to long-term cognitive and neuropsychological impairments. However, our understanding of secondary injury mechanisms is limited. Astrocytes play an important role in brain repair after injury and astrocyte-mediated mechanisms that are implicated in synapse development are likely important in injury-induced synapse remodeling. Our studies suggest a new role of ephrin-B1, which is known to regulate synapse development in neurons, in astrocyte-mediated synapse remodeling following TBI. Indeed, we observed a transient upregulation of ephrin-B1 immunoreactivity in hippocampal astrocytes following moderate controlled cortical impact model of TBI. The upregulation of ephrin-B1 levels in hippocampal astrocytes coincided with a decline in the number of vGlut1-positive glutamatergic input to CA1 neurons at 3 days post injury even in the absence of hippocampal neuron loss. In contrast, tamoxifen-induced ablation of ephrin-B1 from adult astrocytes in ephrin-B1 loxP/y ERT2-Cre GFAP mice accelerated the recovery of vGlut1-positive glutamatergic input to CA1 neurons after TBI. Finally, our studies suggest that astrocytic ephrin-B1 may play an active role in injury-induced synapse remodeling through the activation of STAT3-mediated signaling in astrocytes. TBI-induced upregulation of STAT3 phosphorylation within the hippocampus was suppressed by astrocyte-specific ablation of ephrin-B1 in vivo , whereas the activation of ephrin-B1 in astrocytes triggered an increase in STAT3 phosphorylation in vitro . Thus, regulation of ephrin-B1 signaling in astrocytes may provide new therapeutic opportunities to aid functional recovery after TBI.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1759-0914
17590914
Relation: https://doaj.org/toc/1759-0914
DOI: 10.1177/1759091416630220
URL الوصول: https://doaj.org/article/28c74020970f42049f57e21652ea164b
رقم الأكسشن: edsdoj.28c74020970f42049f57e21652ea164b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17590914
DOI:10.1177/1759091416630220