دورية أكاديمية

Exogenous Hydrogen Sulfide Supplementation Alleviates the Salinity-Stress-Mediated Growth Decline in Wheat (Triticum aestivum L.) by Modulating Tolerance Mechanisms

التفاصيل البيبلوغرافية
العنوان: Exogenous Hydrogen Sulfide Supplementation Alleviates the Salinity-Stress-Mediated Growth Decline in Wheat (Triticum aestivum L.) by Modulating Tolerance Mechanisms
المؤلفون: Khalid H. Alamer
المصدر: Plants, Vol 12, Iss 19, p 3464 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Botany
مصطلحات موضوعية: antioxidants, glycine betaine, glyoxylase I, hydrogen sulfide, proline, oxidative stress, Botany, QK1-989
الوصف: The impact of the exogenous supplementation of hydrogen sulfide (20 and 50 µM HS) on growth, enzyme activity, chlorophyll pigments, and tolerance mechanisms was studied in salinity-stressed (100 mM NaCl) wheat. Salinity significantly reduced height, fresh and dry weight, chlorophyll, and carotenoids. However, the supplementation of HS (at both concentrations) increased these attributes and also mitigated the decline to a considerable extent. The exogenous supplementation of HS reduced the accumulation of hydrogen peroxide (H2O2) and methylglyoxal (MG), thereby reducing lipid peroxidation and increasing the membrane stability index (MSI). Salinity stress increased H2O2, MG, and lipid peroxidation while reducing the MSI. The activity of nitrate reductase was reduced due to NaCl. However, the supplementation of HS alleviated the decline with obvious effects being seen due to 50 µM HS. The activity of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase) was assayed and the content of reduced glutathione (GSH) increased due to salt stress and the supplementation of HS further enhanced their activity. A decline in ascorbic acid due to salinity stress was alleviated due to HS treatment. HS treatment increased the endogenous concentration of HS and nitric oxide (NO) under normal conditions. However, under salinity stress, HS supplementation resulted in a reduction in HS and NO as compared to NaCl-treated plants. In addition, proline and glycine betaine increased due to HS supplementation. HS treatment reduced sodium levels, while the increase in potassium justified the beneficial role of applied HS in improving salt tolerance in wheat.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2223-7747
Relation: https://www.mdpi.com/2223-7747/12/19/3464; https://doaj.org/toc/2223-7747
DOI: 10.3390/plants12193464
URL الوصول: https://doaj.org/article/ec2cc59a90b94a2a9e36df92374a4b5b
رقم الأكسشن: edsdoj.2cc59a90b94a2a9e36df92374a4b5b
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22237747
DOI:10.3390/plants12193464