دورية أكاديمية

Robust Two-Dimensional InSAR Phase Unwrapping via FPA and GAU Dual Attention in ResDANet

التفاصيل البيبلوغرافية
العنوان: Robust Two-Dimensional InSAR Phase Unwrapping via FPA and GAU Dual Attention in ResDANet
المؤلفون: Xiaomao Chen, Shanshan Zhang, Xiaofeng Qin, Jinfeng Lin
المصدر: Remote Sensing, Vol 16, Iss 6, p 1058 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Science
مصطلحات موضوعية: phase unwrapping, attention network, interferometric synthetic aperture radar, convolutional neural networks, Science
الوصف: Two-dimensional phase unwrapping (2-D PU) is vital for reconstructing Earth’s surface topography and displacement from interferometric synthetic aperture radar (InSAR) data. Conventional algorithms rely on the postulate, but this assumption is often insufficient due to abrupt topographic changes and severe noise. To address this challenge, our research proposes a novel approach utilizing deep convolutional neural networks inspired by the U-Net architecture to estimate phase gradient information. Our approach involves downsampling the input data to extract crucial features, followed by upsampling to restore spatial resolution. We incorporate two attention mechanisms—feature pyramid attention (FPA) and global attention upsample (GAU)—and a residual structure in the network’s structure. Thus, we construct ResDANet (residual and dual attention net). We rigorously train ResDANet utilizing simulated datasets and employ an L1-norm objective function to minimize the disparity between unwrapped phase gradients and those calculated by ResDANet, yielding the final 2-D PU results. The network is rigorously trained using two distinct training strategies and encompassing three types of simulated datasets. ResDANet exhibits excellent robust performance and efficiency on simulated data and real data, such as China’s Three Gorges and an Italian volcano.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-4292
Relation: https://www.mdpi.com/2072-4292/16/6/1058; https://doaj.org/toc/2072-4292
DOI: 10.3390/rs16061058
URL الوصول: https://doaj.org/article/2d8e2567b0a44b8f80e01c74f074955e
رقم الأكسشن: edsdoj.2d8e2567b0a44b8f80e01c74f074955e
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20724292
DOI:10.3390/rs16061058