دورية أكاديمية

The Effect of Niobium on the Mechanical and Thermodynamic Properties of Zirconium Alloys

التفاصيل البيبلوغرافية
العنوان: The Effect of Niobium on the Mechanical and Thermodynamic Properties of Zirconium Alloys
المؤلفون: Xianggang Kong, Huimin Kuang, An Li, You Yu, Dmitrii O. Kharchenko, Jianjun Mao, Lu Wu
المصدر: Metals, Vol 14, Iss 6, p 646 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Mining engineering. Metallurgy
مصطلحات موضوعية: elastic constants, hardness, thermal conductivity, thermal expansion, Zr alloy, Mining engineering. Metallurgy, TN1-997
الوصف: The alloy element Nb plays an important role in improving the performance of zirconium alloys in nuclear reactors. The effect mechanism of Nb doping on mechanical and thermodynamic properties was investigated using experimental and theoretical methods. The results of this study showed us that Nb doping refines grains and enhances hardness. The hardness increases from 2.67 GPa of pure Zr to 2.99 GPa of Zr1.5Nb. Depending on the first-principles calculations, the hardness decreases with the increase in the Nb concentration in the Zr matrix, namely from 2.45 Gpa of pure Zr to 1.78 GPa of Zr1.5Nb. If the first-principles calculations indicate that the hardness decreases with the increase in the Nb concentration in the Zr matrix, grain refinement or defects could play a major role in the increase in hardness. Furthermore, regarding the effect of Nb doping on thermal expansion coefficients, the increase in Nb content causes the thermal expansion coefficients to decrease, which might stem from the strong binding energy between Nb and Zr atoms. The thermal conductivities of three samples show similar changing trends, indicating that thermal conductivity begins to decrease at room temperature and reaches a minimum value of around 400 °C. The thermal conductivity of pure zirconium samples is consistently higher, is more obvious than that of Nb-doped samples in the test range, and decreases with an increase in the doping concentration. The possible reasons for this might stem from the distortion of the Zr matrix due to Nb substitution doping and grain refinement, both of which cause phonon propagation scattering and thus hinder the propagation of phonons. The results obtained herein may be useful for the development of advanced nuclear fuels and waste forms that utilize zirconium in applications beyond their current usage.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2075-4701
Relation: https://www.mdpi.com/2075-4701/14/6/646; https://doaj.org/toc/2075-4701
DOI: 10.3390/met14060646
URL الوصول: https://doaj.org/article/3087b1bb012641499c82e49c5584d806
رقم الأكسشن: edsdoj.3087b1bb012641499c82e49c5584d806
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20754701
DOI:10.3390/met14060646