دورية أكاديمية

Genome-wide association analysis reveals a novel pathway mediated by a dual-TIR domain protein for pathogen resistance in cotton

التفاصيل البيبلوغرافية
العنوان: Genome-wide association analysis reveals a novel pathway mediated by a dual-TIR domain protein for pathogen resistance in cotton
المؤلفون: Yihao Zhang, Yaning Zhang, Xiaoyang Ge, Yuan Yuan, Yuying Jin, Ye Wang, Lihong Zhao, Xiao Han, Wei Hu, Lan Yang, Chenxu Gao, Xi Wei, Fuguang Li, Zhaoen Yang
المصدر: Genome Biology, Vol 24, Iss 1, Pp 1-31 (2023)
بيانات النشر: BMC, 2023.
سنة النشر: 2023
المجموعة: LCC:Biology (General)
LCC:Genetics
مصطلحات موضوعية: Verticillium fungi, GWAS, Introgression, NLR receptors, Autoactivity, Self-association, Biology (General), QH301-705.5, Genetics, QH426-470
الوصف: Abstract Background Verticillium wilt is one of the most devasting diseases for many plants, leading to global economic loss. Cotton is known to be vulnerable to its fungal pathogen, Verticillium dahliae, yet the related genetic mechanism remains unknown. Results By genome-wide association studies of 419 accessions of the upland cotton, Gossypium hirsutum, we identify ten loci that are associated with resistance against Verticillium wilt. Among these loci, SHZDI1/SHZDP2/AYDP1 from chromosome A10 is located on a fragment introgressed from Gossypium arboreum. We characterize a large cluster of Toll/interleukin 1 (TIR) nucleotide-binding leucine-rich repeat receptors in this fragment. We then identify a dual-TIR domain gene from this cluster, GhRVD1, which triggers an effector-independent cell death and is induced by Verticillium dahliae. We confirm that GhRVD1 is one of the causal gene for SHZDI1. Allelic variation in the TIR domain attenuates GhRVD1-mediated resistance against Verticillium dahliae. Homodimerization between TIR1-TIR2 mediates rapid immune response, while disruption of its αD- and αE-helices interface eliminates the autoactivity and self-association of TIR1-TIR2. We further demonstrate that GhTIRP1 inhibits the autoactivity and self-association of TIR1-TIR2 by competing for binding to them, thereby preventing the resistance to Verticillium dahliae. Conclusions We propose the first working model for TIRP1 involved self-association and autoactivity of dual-TIR domain proteins that confer compromised pathogen resistance of dual-TIR domain proteins in plants. The findings reveal a novel mechanism on Verticillium dahliae resistance and provide genetic basis for breeding in future.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1474-760X
Relation: https://doaj.org/toc/1474-760X
DOI: 10.1186/s13059-023-02950-9
URL الوصول: https://doaj.org/article/32154b0c1d7c449aa0cf8e6670a56b10
رقم الأكسشن: edsdoj.32154b0c1d7c449aa0cf8e6670a56b10
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1474760X
DOI:10.1186/s13059-023-02950-9