دورية أكاديمية

Copper Hexacyanoferrate Thin Film Deposition and Its Application to a New Method for Diffusion Coefficient Measurement

التفاصيل البيبلوغرافية
العنوان: Copper Hexacyanoferrate Thin Film Deposition and Its Application to a New Method for Diffusion Coefficient Measurement
المؤلفون: Jeonghun Yun, Yeongae Kim, Caitian Gao, Moobum Kim, Jae Yoon Lee, Chul-Ho Lee, Tae-Hyun Bae, Seok Woo Lee
المصدر: Nanomaterials, Vol 11, Iss 7, p 1860 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Chemistry
مصطلحات موضوعية: prussian blue analogue, thin film, micropattern, diffusion coefficient, Chemistry, QD1-999
الوصف: The use of Prussian blue analogues (PBA) materials in electrochemical energy storage and harvesting has gained much interest, necessitating the further clarification of their electrochemical characteristics. However, there is no well-defined technique for manufacturing PBA-based microelectrochemical devices because the PBA film deposition method has not been well studied. In this study, we developed the following deposition method for growing copper hexacyanoferrate (CuHCFe) thin film: copper thin film is immersed into a potassium hexacyanoferrate solution, following which the redox reaction induces the spontaneous deposition of CuHCFe thin film on the copper thin film. The film grown via this method showed compatibility with conventional photolithography processes, and the micropattern of the CuHCFe thin film was successfully defined by a lift-off process. A microelectrochemical device based on the CuHCFe thin film was fabricated via micropatterning, and the sodium ion diffusivity in CuHCFe was measured. The presented thin film deposition method can deposit PBAs on any surface, including insulating substrates, and it can extend the utilization of PBA thin films to various applications.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2079-4991
Relation: https://www.mdpi.com/2079-4991/11/7/1860; https://doaj.org/toc/2079-4991
DOI: 10.3390/nano11071860
URL الوصول: https://doaj.org/article/38b36711a8db42a494d7301eb35c5c48
رقم الأكسشن: edsdoj.38b36711a8db42a494d7301eb35c5c48
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20794991
DOI:10.3390/nano11071860