دورية أكاديمية

Zeroth- and first-order long range non-diffracting Gauss–Bessel beams generated by annihilating multiple-charged optical vortices

التفاصيل البيبلوغرافية
العنوان: Zeroth- and first-order long range non-diffracting Gauss–Bessel beams generated by annihilating multiple-charged optical vortices
المؤلفون: Lyubomir Stoyanov, Maya Zhekova, Aleksander Stefanov, Ivan Stefanov, Gerhard G. Paulus, Alexander Dreischuh
المصدر: Scientific Reports, Vol 10, Iss 1, Pp 1-13 (2020)
بيانات النشر: Nature Portfolio, 2020.
سنة النشر: 2020
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Abstract We demonstrate an alternative approach for generating zeroth- and first-order long range non-diffracting Gauss–Bessel beams (GBBs). Starting from a Gaussian beam, the key point is the creation of a bright ring-shaped beam with a large radius-to-width ratio, which is subsequently Fourier-transformed by a thin lens. The phase profile required for creating zeroth-order GBBs is flat and helical for first-order GBBs with unit topological charge (TC). Both the ring-shaped beam and the required phase profile can be realized by creating highly charged optical vortices by a spatial light modulator and annihilating them by using a second modulator of the same type. The generated long-range GBBs are proven to have negligible transverse evolution up to 2 m and can be regarded as non-diffracting. The influences of the charge state of the TCs, the propagation distance behind the focusing lens, and the GBB profiles on the relative intensities of the peak/rings are discussed. The method is much more efficient as compared to this using annular slits in the back focal plane of lenses. Moreover, at large propagation distances the quality of the generated GBBs significantly surpasses this of GBBs created by low angle axicons. The developed analytical model reproduces the experimental data. The presented method is flexible, easily realizable by using a spatial light modulator, does not require any special optical elements and, thus, is accessible in many laboratories.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-020-78613-7
URL الوصول: https://doaj.org/article/38dbc2c62419435abd271b8ca746c377
رقم الأكسشن: edsdoj.38dbc2c62419435abd271b8ca746c377
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20452322
DOI:10.1038/s41598-020-78613-7