دورية أكاديمية

Distinctively altered lignin biosynthesis by site‐modification of OsCAD2 for enhanced biomass saccharification in rice

التفاصيل البيبلوغرافية
العنوان: Distinctively altered lignin biosynthesis by site‐modification of OsCAD2 for enhanced biomass saccharification in rice
المؤلفون: Guifen Zhang, Lingqiang Wang, Xukai Li, Shuming Bai, Yali Xue, Zihui Li, Shang‐wen Tang, Yanting Wang, Youmei Wang, Zhen Hu, Ping Li, Liangcai Peng
المصدر: GCB Bioenergy, Vol 13, Iss 2, Pp 305-319 (2021)
بيانات النشر: Wiley, 2021.
سنة النشر: 2021
المجموعة: LCC:Renewable energy sources
مصطلحات موضوعية: alkali pretreatment, bioethanol, biomass porosity, CAD, cellulose accessibility, CRISPR/Cas9, Renewable energy sources, TJ807-830, Energy industries. Energy policy. Fuel trade, HD9502-9502.5
الوصف: Abstract Crop straws represent enormous biomass resource convertible for biofuels and bioproducts, but lignocellulose recalcitrance restricts its saccharification for commercial utility. Despite genetic modification of lignin biosynthesis being attempted to reduce recalcitrance in bioenergy crops, it remains challenging to optimize lignin deposition without an unacceptable yield penalty. Based on gene expression analysis and phylogenetic tree profiling, a cinnamyl alcohol dehydrogenase gene (OsCAD2) as the target for genetic engineering of lignin biosynthesis in rice was selected in this study. Using CRISPR/Cas9 technology, independent homozygous transgenic lines with precise site mutation of OsCAD2, which showed slightly reduced lignin levels but markedly decreased p‐hydroxyphenyl (H) contents in lignin by 34% and increased guaiacyl (G) contents by 16%, compared to the wild type were generated in this study. Under mild alkali pretreatment (1% NaOH, 50°C), the OsCAD2 site‐modified lines showed effective lignin extraction up to 70% (of total lignin) from mature rice straws, which caused either significantly increased biomass porosity and cellulose accessibility or remarkably reduced cellulase adsorption to lignin in pretreated lignocellulose residues. These consequently led to almost complete biomass enzymatic saccharification with increased hexoses yields by 61%–72% in the modified lines, being much higher than those of the lignin‐altered lines reported in previous studies. Hence, this study has demonstrated a novel genetic engineering strategy to reduce lignocellulose recalcitrance with minimized biomass loss for cost‐effective biomass conversion to bioethanol in rice and bioenergy crops.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1757-1707
1757-1693
Relation: https://doaj.org/toc/1757-1693; https://doaj.org/toc/1757-1707
DOI: 10.1111/gcbb.12772
URL الوصول: https://doaj.org/article/39f62a45738646808c67151f916105ce
رقم الأكسشن: edsdoj.39f62a45738646808c67151f916105ce
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:17571707
17571693
DOI:10.1111/gcbb.12772