دورية أكاديمية

DKK1 promotes hepatocellular carcinoma inflammation, migration and invasion: Implication of TGF-β1.

التفاصيل البيبلوغرافية
العنوان: DKK1 promotes hepatocellular carcinoma inflammation, migration and invasion: Implication of TGF-β1.
المؤلفون: Maha Fezza, Mayssam Moussa, Rita Aoun, Rita Haber, George Hilal
المصدر: PLoS ONE, Vol 14, Iss 9, p e0223252 (2019)
بيانات النشر: Public Library of Science (PLoS), 2019.
سنة النشر: 2019
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: Dickkopf-1 (DKK1), an inhibitor of the most frequently impaired signaling pathway in hepatocellular carcinoma (HCC), the Wnt/beta-catenin pathway, seems to fulfill contradictory functions in the process of tumorigenesis, acting either as an oncogenic promoter of metastasis or as a tumor suppressor. Elevated serum levels of DKK1 have been reported in HCC; however, little is known about its functional significance. In the current study, we treated HepG2/C3A and PLC/PRF/5 with the recombinant protein DKK1. Cytotoxicity was first determined by the WST-8 assay. AFP expression was measured at both the mRNA and protein levels. Expression of the oncogenes MYC, CCND1, hTERT, and MDM2 and the tumor suppressor genes TP53, P21 and RB was assessed. Western blot analysis of non-phosphorylated ẞ-catenin and Sanger sequencing were performed to explain the functional differences between the two cell lines. Subsequently, inflammation, migration and invasion were evaluated by qPCR, ELISA, the Boyden chamber assay, zymography, and MMP-2 and MMP-9 western blot analysis. Knockdown of DKK1 and TGF-β1 were also performed. Our results suggest that DKK1 exerts an oncogenic effect on HepG2/C3A cell line by upregulating the expression of oncogenes and downregulating that of tumor suppressor genes, whereas the opposite effect was demonstrated in PLC/PRF/5 cells. This differential impact of DKK1 can be explained by the mutations that affect the canonical Wnt pathway that were detected in exon 3 of the CTNNB1 gene in the HepG2 cell line. We further confirmed that DKK1 promotes inflammation, tumor invasion and migration in both cell types. The canonical pathway was not responsible for the DKK1 proinvasive effect, as indicated by the active ẞ-catenin levels in the two cell lines upon DKK1 treatment. Interestingly, knockdown of TGF-β1 negatively affected the DKK1 proinvasive effect. Taken together, DKK1 appears to facilitate tumor invasion and migration through TGF- β1 by remodeling the tumor microenvironment and inducing inflammation. This finding endorses the relevance of TGF-β1 as a therapeutic target.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1932-6203
Relation: https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0223252
URL الوصول: https://doaj.org/article/3b36af22ef6b43a6af5b113d31882d89
رقم الأكسشن: edsdoj.3b36af22ef6b43a6af5b113d31882d89
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19326203
DOI:10.1371/journal.pone.0223252