دورية أكاديمية

Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles

التفاصيل البيبلوغرافية
العنوان: Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles
المؤلفون: Tae Hwan Shin, Abdurazak Aman Ketebo, Da Yeon Lee, Seungah Lee, Seong Ho Kang, Shaherin Basith, Balachandran Manavalan, Do Hyeon Kwon, Sungsu Park, Gwang Lee
المصدر: Journal of Nanobiotechnology, Vol 19, Iss 1, Pp 1-14 (2021)
بيانات النشر: BMC, 2021.
سنة النشر: 2021
المجموعة: LCC:Biotechnology
LCC:Medical technology
مصطلحات موضوعية: Cell movement, Membrane fluidity, Micropillar, Silica-coated magnetic nanoparticles, Traction force, Biotechnology, TP248.13-248.65, Medical technology, R855-855.5
الوصف: Abstract Background Nanoparticles are being increasingly used in biomedical applications owing to their unique physical and chemical properties and small size. However, their biophysical assessment and evaluation of side-effects remain challenging. We addressed this issue by investigating the effects of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate [MNPs@SiO2(RITC)] on biophysical aspects, such as membrane fluidity and traction force of human embryonic kidney 293 (HEK293) cells. We further extended our understanding on the biophysical effects of nanoparticles on cells using a combination of metabolic profiling and transcriptomic network analysis. Results Overdose (1.0 μg/µL) treatment with MNPs@SiO2(RITC) induced lipid peroxidation and decreased membrane fluidity in HEK293 cells. In addition, HEK293 cells were morphologically shrunk, and their aspect ratio was significantly decreased. We found that each traction force (measured in micropillar) was increased, thereby increasing the total traction force in MNPs@SiO2(RITC)-treated HEK293 cells. Due to the reduction in membrane fluidity and elevation of traction force, the velocity of cell movement was also significantly decreased. Moreover, intracellular level of adenosine triphosphate (ATP) was also decreased in a dose-dependent manner upon treatment with MNPs@SiO2(RITC). To understand these biophysical changes in cells, we analysed the transcriptome and metabolic profiles and generated a metabotranscriptomics network, which revealed relationships among peroxidation of lipids, focal adhesion, cell movement, and related genes and metabolites. Furthermore, in silico prediction of the network showed increment in the peroxidation of lipids and suppression of focal adhesion and cell movement. Conclusion Taken together, our results demonstrated that overdose of MNPs@SiO2(RITC) impairs cellular movement, followed by changes in the biophysical properties of cells, thus highlighting the need for biophysical assessment of nanoparticle-induced side-effects.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1477-3155
Relation: https://doaj.org/toc/1477-3155
DOI: 10.1186/s12951-020-00765-5
URL الوصول: https://doaj.org/article/41b24a5e59a049be95c19a99480ce851
رقم الأكسشن: edsdoj.41b24a5e59a049be95c19a99480ce851
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14773155
DOI:10.1186/s12951-020-00765-5