دورية أكاديمية

Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells

التفاصيل البيبلوغرافية
العنوان: Wnt/β-Catenin Pathway Is Involved in Cadmium-Induced Inhibition of Osteoblast Differentiation of Bone Marrow Mesenchymal Stem Cells
المؤلفون: Lu Wu, Qinzhi Wei, Yingjian Lv, Junchao Xue, Bo Zhang, Qian Sun, Tian Xiao, Rui Huang, Ping Wang, Xiangyu Dai, Haibo Xia, Junjie Li, Xingfen Yang, Qizhan Liu
المصدر: International Journal of Molecular Sciences, Vol 20, Iss 6, p 1519 (2019)
بيانات النشر: MDPI AG, 2019.
سنة النشر: 2019
المجموعة: LCC:Biology (General)
LCC:Chemistry
مصطلحات موضوعية: osteogenesis, bone marrow mesenchymal stem cells, cadmium, Wnt/β-catenin pathway, Biology (General), QH301-705.5, Chemistry, QD1-999
الوصف: Cadmium is a common environmental pollutant that causes bone damage. However, the effects of cadmium on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) and its mechanism of action in this process are unclear. Here, we determined the effects of cadmium chloride (CdCl2) on the osteogenic differentiation of BMMSCs and the potential mechanism involved in this process. As determined in the present investigation, CdCl2, in a concentration-dependent manner, affected the viability of BMMSCs and their cytoskeletons. Exposure to 0.1 or 0.2 µM CdCl2 inhibited osteogenic differentiation of BMMSCs, which was reflected in the down-regulation of osteoblast-related genes (ALP, OCN, Runx2, OSX, and OPN); in suppression of the protein expression of alkaline phosphatase (ALP) and runt-related transcription factor 2 (Runx2); and in decreased ALP activity and capacity for mineralization. Moreover, mRNA microarray was performed to determine the roles of these factors in BMMSCs treated with CdCl2 in comparison to control BMMSCs. As determined with the microarrays, the Wingless-type (Wnt), mothers against decapentaplegic and the C. elegans gene Sam (SMAD), and Janus kinase-Signal Transducers and Activators of Transcription (JAK-STAT) signaling pathways were involved in the effects caused by CdCl2. Moreover, during differentiation, the protein levels of Wnt3a, β-catenin, lymphoid enhancer factor 1 (LEF1), and T-cell factor 1 (TCF1) were reduced by CdCl2. The current research shows that CdCl2 suppresses the osteogenesis of BMMSCs via inhibiting the Wnt/β-catenin pathway. The results establish a previously unknown mechanism for bone injury induced by CdCl2.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1422-0067
Relation: https://www.mdpi.com/1422-0067/20/6/1519; https://doaj.org/toc/1422-0067
DOI: 10.3390/ijms20061519
URL الوصول: https://doaj.org/article/ea48aae428c44aaab6240b3f9bd6cfca
رقم الأكسشن: edsdoj.48aae428c44aaab6240b3f9bd6cfca
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14220067
DOI:10.3390/ijms20061519