دورية أكاديمية

Optimal Contribution Selection Improves the Rate of Genetic Gain in Grain Yield and Yield Stability in Spring Canola in Australia and Canada

التفاصيل البيبلوغرافية
العنوان: Optimal Contribution Selection Improves the Rate of Genetic Gain in Grain Yield and Yield Stability in Spring Canola in Australia and Canada
المؤلفون: Wallace A. Cowling, Felipe A. Castro-Urrea, Katia T. Stefanova, Li Li, Robert G. Banks, Renu Saradadevi, Olaf Sass, Brian P. Kinghorn, Kadambot H. M. Siddique
المصدر: Plants, Vol 12, Iss 2, p 383 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Botany
مصطلحات موضوعية: genetic gain, overall performance, grain yield, yield stability, canola, rapeseed, Botany, QK1-989
الوصف: Crop breeding must achieve higher rates of genetic gain in grain yield (GY) and yield stability to meet future food demands in a changing climate. Optimal contributions selection (OCS) based on an index of key economic traits should increase the rate of genetic gain while minimising population inbreeding. Here we apply OCS in a global spring oilseed rape (canola) breeding program during three cycles of S0,1 family selection in 2016, 2018, and 2020, with several field trials per cycle in Australia and Canada. Economic weights in the index promoted high GY, seed oil, protein in meal, and Phoma stem canker (blackleg) disease resistance while maintaining plant height, flowering time, oleic acid, and seed size and decreasing glucosinolate content. After factor analytic modelling of the genotype-by-environment interaction for the additive effects, the linear rate of genetic gain in GY across cycles was 0.059 or 0.087 t ha−1 y−1 (2.9% or 4.3% y−1) based on genotype scores for the first factor (f1) expressed in trait units or average predicted breeding values across environments, respectively. Both GY and yield stability, defined as the root-mean-square deviation from the regression line associated with f1, were predicted to improve in the next cycle with a low achieved mean parental coancestry (0.087). These methods achieved rapid genetic gain in GY and other traits and are predicted to improve yield stability across global spring canola environments.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2223-7747
Relation: https://www.mdpi.com/2223-7747/12/2/383; https://doaj.org/toc/2223-7747
DOI: 10.3390/plants12020383
URL الوصول: https://doaj.org/article/4cef4629dcfe41eda99a53bea8b98112
رقم الأكسشن: edsdoj.4cef4629dcfe41eda99a53bea8b98112
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22237747
DOI:10.3390/plants12020383