دورية أكاديمية

Evolution and dynamics of the vertical temperature profile in an oligotrophic lake

التفاصيل البيبلوغرافية
العنوان: Evolution and dynamics of the vertical temperature profile in an oligotrophic lake
المؤلفون: Z. B. Klaić, K. Babić, M. Orlić
المصدر: Hydrology and Earth System Sciences, Vol 24, Pp 3399-3416 (2020)
بيانات النشر: Copernicus Publications, 2020.
سنة النشر: 2020
المجموعة: LCC:Technology
LCC:Environmental technology. Sanitary engineering
LCC:Geography. Anthropology. Recreation
LCC:Environmental sciences
مصطلحات موضوعية: Technology, Environmental technology. Sanitary engineering, TD1-1066, Geography. Anthropology. Recreation, Environmental sciences, GE1-350
الوصف: In this study, the fine-scale responses of a stratified oligotrophic karstic lake (Kozjak Lake, Plitvice Lakes, Croatia; the lake fetch is 2.3 km, and the maximum depth is 46 m) to atmospheric forcing on the lake surface are investigated. Lake temperatures measured at a resolution of 2 min at 15 depths ranging from 0.2 to 43 m, which were observed during the 6 July–5 November 2018 period, were analyzed. The results show thermocline deepening from 10 m at the beginning of the observation period to 16 m at the end of the observation period, where the latter depth corresponds to approximately one-third of the lake depth. The pycnocline followed the same pattern, except that the deepening occurred throughout the entire period approximately 1 m above the thermocline. On average, thermocline deepening was 3–4 cm d−1, while the maximum deepening (12.5 cm d−1) coincided with the occurrence of internal seiches. Furthermore, the results indicate three different types of forcings on the lake surface; two of these forcings have diurnal periodicity – (1) continuous heat fluxes and (2) occasional periodic stronger winds – whereas forcing (3) corresponds to occasional nonperiodic stronger winds with steady along-basin directions. Continuous heat fluxes (1) produced forced diurnal oscillations in the lake temperature within the first 5 m of the lake throughout the entire observation period. Noncontinuous periodic stronger winds (2) resulted in occasional forced diurnal oscillations in the lake temperatures at depths from approximately 7 to 20 m. Occasional strong and steady along-basin winds (3) triggered both baroclinic internal seiches with a principal period of 8.0 h and barotropic surface seiches with a principal period of 9 min. Lake currents produced by the surface seiches under realistic-topography conditions generated baroclinic oscillations of the thermocline region (at depths from 9 to 17 m) with periods corresponding to the period of surface seiches (≈ 9 min), which, to the best of our knowledge, has not been reported in previous lake studies.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1027-5606
1607-7938
Relation: https://www.hydrol-earth-syst-sci.net/24/3399/2020/hess-24-3399-2020.pdf; https://doaj.org/toc/1027-5606; https://doaj.org/toc/1607-7938
DOI: 10.5194/hess-24-3399-2020
URL الوصول: https://doaj.org/article/a4cfad36597e4453950e87ec5af8a4b6
رقم الأكسشن: edsdoj.4cfad36597e4453950e87ec5af8a4b6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:10275606
16077938
DOI:10.5194/hess-24-3399-2020