دورية أكاديمية

Whole Exome Sequencing Reveals a Novel Homozygous Variant in the Ganglioside Biosynthetic Enzyme, ST3GAL5 Gene in a Saudi Family Causing Salt and Pepper Syndrome

التفاصيل البيبلوغرافية
العنوان: Whole Exome Sequencing Reveals a Novel Homozygous Variant in the Ganglioside Biosynthetic Enzyme, ST3GAL5 Gene in a Saudi Family Causing Salt and Pepper Syndrome
المؤلفون: Angham Abdulrhman Abdulkareem, Bader H. Shirah, Muhammad Imran Naseer
المصدر: Genes, Vol 14, Iss 2, p 354 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Genetics
مصطلحات موضوعية: salt and pepper developmental regression syndrome, epilepsy, developmental delay, GM3 synthase, short stature, saudi arabia, Genetics, QH426-470
الوصف: Salt and pepper developmental regression syndrome (SPDRS) is an autosomal recessive disorder characterized by epilepsy, profound intellectual disability, choreoathetosis, scoliosis, and dermal pigmentation along with dysmorphic facial features. GM3 synthase deficiency is due to any pathogenic mutation in the ST3 Beta-Galactoside Alpha-2,3-Sialyltransferase 5 (ST3GAL5) gene, which encodes the sialyltransferase enzyme that synthesizes ganglioside GM3. In this study, the Whole Exome Sequencing (WES) results presented a novel homozygous pathogenic variant, NM_003896.3:c.221T>A (p.Val74Glu), in the exon 3 of the ST3GAL5 gene. causing SPDRS with epilepsy, short stature, speech delay, and developmental delay in all three affected members of the same Saudi family. The results of the WES sequencing were further validated using Sanger sequencing analysis. For the first time, we are reporting SPDRS in a Saudi family showing phenotypic features similar to other reported cases. This study further adds to the literature and explains the role of the ST3GAL5 gene, which plays an important role, and any pathogenic variants that may cause the GM3 synthase deficiency that leads to the disease. This study would finally enable the creation of a database of the disease that provides a base for understanding the important and critical genomic regions that will help control intellectual disability and epilepsy in Saudi patients.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2073-4425
Relation: https://www.mdpi.com/2073-4425/14/2/354; https://doaj.org/toc/2073-4425
DOI: 10.3390/genes14020354
URL الوصول: https://doaj.org/article/ac4e6012fc344fbebb36ae01cea1fef5
رقم الأكسشن: edsdoj.4e6012fc344fbebb36ae01cea1fef5
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20734425
DOI:10.3390/genes14020354