دورية أكاديمية

SIRT2 Contributes to the Regulation of Intestinal Cell Proliferation and DifferentiationSummary

التفاصيل البيبلوغرافية
العنوان: SIRT2 Contributes to the Regulation of Intestinal Cell Proliferation and DifferentiationSummary
المؤلفون: Chang Li, Yuning Zhou, Piotr Rychahou, Heidi L. Weiss, Eun Y. Lee, Courtney L. Perry, Terrence A. Barrett, Qingding Wang, B. Mark Evers
المصدر: Cellular and Molecular Gastroenterology and Hepatology, Vol 10, Iss 1, Pp 43-57 (2020)
بيانات النشر: Elsevier, 2020.
سنة النشر: 2020
المجموعة: LCC:Diseases of the digestive system. Gastroenterology
مصطلحات موضوعية: Sirtuin, IEC, Intestinal Epithelial Cells, Wnt/β-Catenin, Intestinal Homeostasis, Mouse Model, Diseases of the digestive system. Gastroenterology, RC799-869
الوصف: Background and Aims: Intestinal mucosa undergoes a continual process of proliferation, differentiation, and apoptosis. Disruption of this homeostasis is associated with disorders such as inflammatory bowel disease (IBD). We investigated the role of Sirtuin 2 (SIRT2), a NAD-dependent protein deacetylase, in intestinal epithelial cell (IEC) proliferation and differentiation and the mechanism by which SIRT2 contributes to maintenance of intestinal cell homeostasis. Methods: IECs were collected from SIRT2-deficient mice and patients with IBD. Expression of SIRT2, differentiation markers (mucin2, intestinal alkaline phosphatase, villin, Na,K-ATPase, and lysozyme) and Wnt target genes (EPHB2, AXIN2, and cyclin D1) was determined by western blot, real-time RT-PCR, or immunohistochemical (IHC) staining. IECs were treated with TNF or transfected with siRNA targeting SIRT2. Proliferation was determined by villus height and crypt depth, and Ki67 and cyclin D1 IHC staining. For studies using organoids, intestinal crypts were isolated. Results: Increased SIRT2 expression was localized to the more differentiated region of the intestine. In contrast, SIRT2 deficiency impaired proliferation and differentiation and altered stemness in the small intestinal epithelium ex vivo and in vivo. SIRT2-deficient mice showed decreased intestinal enterocyte and goblet cell differentiation but increased the Paneth cell lineage and increased proliferation of IECs. Moreover, we found that SIRT2 inhibits Wnt/β-catenin signaling, which critically regulates IEC proliferation and differentiation. Consistent with a distinct role for SIRT2 in maintenance of gut homeostasis, intestinal mucosa from IBD patients exhibited decreased SIRT2 expression. Conclusion: We demonstrate that SIRT2, which is decreased in intestinal tissues from IBD patients, regulates Wnt-β-catenin signaling and is important for maintenance of IEC proliferation and differentiation.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2352-345X
Relation: http://www.sciencedirect.com/science/article/pii/S2352345X20300047; https://doaj.org/toc/2352-345X
DOI: 10.1016/j.jcmgh.2020.01.004
URL الوصول: https://doaj.org/article/4ec9fb47344648e8968bcf4cb061c8c6
رقم الأكسشن: edsdoj.4ec9fb47344648e8968bcf4cb061c8c6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2352345X
DOI:10.1016/j.jcmgh.2020.01.004