دورية أكاديمية

Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function

التفاصيل البيبلوغرافية
العنوان: Long non-coding RNA LncCplx2 regulates glucose homeostasis and pancreatic β cell function
المؤلفون: Linlin Wang, Liqiao Hu, Xingyue Wang, Zhaoxu Geng, Meng Wan, Junfeng Hao, Huisheng Liu, Yuying Fan, Tao Xu, Zonghong Li
المصدر: Molecular Metabolism, Vol 80, Iss , Pp 101878- (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
المجموعة: LCC:Internal medicine
مصطلحات موضوعية: LncCplx2, Glucose homeostasis, Pancreatic β cell, Insulin secretion, Internal medicine, RC31-1245
الوصف: Objective: Numerous studies have highlighted the role of clock genes in diabetes disease and pancreatic β cell functions. However, whether rhythmic long non-coding RNAs involve in this process is unknown. Methods: RNA-seq and 3’ rapid amplification of cDNA ends (RACE)-PCR were used to identify the rat LncCplx2 in pancreatic β cells. The subcellular analysis with qRT-PCR and RNA-Scope were used to assess the localization of LncCplx2. The effects of LncCplx2 overexpression or knockout (KO) on the regulation of pancreatic β cell functions were assessed in vitro and in vivo. RNA-seq, immunoblotting (IB), Immunoprecipitation (IP), RNA pull-down, and chromatin immunoprecipitation (ChIP)-PCR assays were employed to explore the regulatory mechanisms through LncRNA-protein interaction. Metabolism cage was used to measure the circadian behaviors. Results: We first demonstrate that LncCplx2 is a conserved nuclear long non-coding RNA and enriched in pancreatic islets, which is driven by core clock transcription factor BMAL1. LncCplx2 is downregulated in the diabetic islets and repressed by high glucose, which regulates the insulin secretion in vitro and ex vivo. Furthermore, LncCplx2 KO mice exhibit diabetic phenotypes, such as high blood glucose and impaired glucose tolerance. Notably, LncCplx2 deficiency has significant effects on circadian behavior, including prolonged period duration, decreased locomotor activity, and reduced metabolic rates. Mechanistically, LncCplx2 recruits EZH2, a core subunit of polycomb repression complex 2 (PRC2), to the promoter of target genes, thereby silencing circadian gene expression, which leads to phase shifts and amplitude changes in insulin secretion and cell cycle genes. Conclusions: Our results propose LncCplx2 as an unanticipated transcriptional regulator in a circadian system and suggest a more integral mechanism for the coordination of circadian rhythms and glucose homeostasis.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2212-8778
Relation: http://www.sciencedirect.com/science/article/pii/S2212877824000097; https://doaj.org/toc/2212-8778
DOI: 10.1016/j.molmet.2024.101878
URL الوصول: https://doaj.org/article/52f46aa3b3e044e19a58bc4621060550
رقم الأكسشن: edsdoj.52f46aa3b3e044e19a58bc4621060550
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22128778
DOI:10.1016/j.molmet.2024.101878