دورية أكاديمية

Pig manure biochar for contaminated soil management: nutrient release, toxic metal immobilization, and Chinese cabbage cultivation

التفاصيل البيبلوغرافية
العنوان: Pig manure biochar for contaminated soil management: nutrient release, toxic metal immobilization, and Chinese cabbage cultivation
المؤلفون: Fengfeng Sui, Min Wang, Liqiang Cui, Guixiang Quan, Jinlong Yan, Lianqing Li
المصدر: Ecotoxicology and Environmental Safety, Vol 257, Iss , Pp 114928- (2023)
بيانات النشر: Elsevier, 2023.
سنة النشر: 2023
المجموعة: LCC:Environmental pollution
LCC:Environmental sciences
مصطلحات موضوعية: Pig manure, Pig manure biochar, Chinese cabbage, Toxic metals, Environmental pollution, TD172-193.5, Environmental sciences, GE1-350
الوصف: Pig manure could be an effective fertilizer source for soil, but with high concentrations of xic elements. It has been shown that the pyrolysis method could largely reduce the environmental risk of pig manure. However, the comprehensive analysis of both toxic metals immobilization effect and environmental risk of pig manure biochar applied as a soil amendment is rarely addressed. To address the knowledge gap, this study was carried out with pig manure (PM) and pig manure biochar (PMB). The PM was pyrolyzed at 450 ℃ and 700 ℃, the corresponding biochar was abbreviated as PMB450 and PMB700, respectively. The PM and PMB were applied in a pot experiment growing Chinese cabbage (Brassica rape L. ssp. Pekinensis) with clay-loam paddy soil. The application rates of PM were set at 0.5% (S), 2% (L), 4% (M) and 6% (H). With the equivalent mass principle, PMB450 and PMB700 were applied at 0.23% (S), 0.92% (L), 1.84% (M), 2.76% (H), and 0.192% (S), 0.7% (L), 1.4% (M), 2.1% (H), respectively. Parameters of Chinese cabbage biomass and quality, total and available concentrations of toxic metals in soil, and soil chemical properties were systemically measured. The main results of this study showed that compared with PM, PMB700 was more effective than PMB450, which induced the highest reductions of Cu, Zn, Pb, and Cd contents in cabbage by 62.6%, 73.0%, 43.9%, and 74.3%, respectively. Both PM and PMB increased the total contents of metals (Cu, Zn, Pb, and Cd) in soil, and PMB decreased the mobility of Cu, Zn, Pb, and Cd at high application rates (≥2%). Treatment with H-PMB700 reduced CaCl2 extractable Cu, Zn, Pb, and Cd by 70.0%, 71.6%, 23.3%, and 15.9%, respectively. For Cu, Zn, Pb, and Cd fractions with BCR extraction, PMB treatments, especially PMB700, were more effective than PM in decreasing the available fractions (F1 +F2 +F3) at high application rates (≥2%). Overall, pyrolysis with high temperature (e.g., 700 ℃) could significantly stabilize the toxic elements in PM and enhance PM’s effect on toxic metals immobilization. The marked effects of PMB700 on toxic metal immobilization and cabbage quality improvement might be attributed to high ash contents and liming effect.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 0147-6513
Relation: http://www.sciencedirect.com/science/article/pii/S0147651323004323; https://doaj.org/toc/0147-6513
DOI: 10.1016/j.ecoenv.2023.114928
URL الوصول: https://doaj.org/article/55b374035c8247559a40a3f171dee497
رقم الأكسشن: edsdoj.55b374035c8247559a40a3f171dee497
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:01476513
DOI:10.1016/j.ecoenv.2023.114928