دورية أكاديمية

Classification of high-throughput phenotyping data for differentiation among nutrient deficiency in common bean

التفاصيل البيبلوغرافية
العنوان: Classification of high-throughput phenotyping data for differentiation among nutrient deficiency in common bean
المؤلفون: Boris Lazarević, Klaudija Carović-Stanko, Marek Živčak, Dominik Vodnik, Tomislav Javornik, Toni Safner
المصدر: Frontiers in Plant Science, Vol 13 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Plant culture
مصطلحات موضوعية: chlorophyll fluorescence imaging, multispectral imaging, 3D multispectral scanning, discriminant analysis, recursive partitioning, nutrient deficiency, Plant culture, SB1-1110
الوصف: The development of automated, image-based, high-throughput plant phenotyping enabled the simultaneous measurement of many plant traits. Big and complex phenotypic datasets require advanced statistical methods which enable the extraction of the most valuable traits when combined with other measurements, interpretation, and understanding of their (eco)physiological background. Nutrient deficiency in plants causes specific symptoms that can be easily detected by multispectral imaging, 3D scanning, and chlorophyll fluorescence measurements. Screening of numerous image-based phenotypic traits of common bean plants grown in nutrient-deficient solutions was conducted to optimize phenotyping and select the most valuable phenotypic traits related to the specific nutrient deficit. Discriminant analysis was used to compare the efficiency of groups of traits obtained by high-throughput phenotyping techniques (chlorophyll fluorescence, multispectral traits, and morphological traits) in discrimination between nutrients [nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe)] at early and prolonged deficiency. Furthermore, a recursive partitioning analysis was used to select variables within each group of traits that show the highest accuracy for assigning plants to the respective nutrient deficit treatment. Using the entire set of measured traits, the highest classification success by discriminant function was achieved using multispectral traits. In the subsequent measurements, chlorophyll fluorescence and multispectral traits achieved comparably high classification success. Recursive partitioning analysis was able to intrinsically identify variables within each group of traits and their threshold values that best separate the observations from different nutrient deficiency groups. Again, the highest success in assigning plants into their respective groups was achieved based on selected multispectral traits. Selected chlorophyll fluorescence traits also showed high accuracy for assigning plants into control, Fe, Mg, and P deficit but could not correctly assign K and N deficit plants. This study has shown the usefulness of combining high-throughput phenotyping techniques with advanced data analysis to determine and differentiate nutrient deficiency stress.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1664-462X
Relation: https://www.frontiersin.org/articles/10.3389/fpls.2022.931877/full; https://doaj.org/toc/1664-462X
DOI: 10.3389/fpls.2022.931877
URL الوصول: https://doaj.org/article/e5bfc48d6cc540f8a687a9c19d4cf25f
رقم الأكسشن: edsdoj.5bfc48d6cc540f8a687a9c19d4cf25f
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:1664462X
DOI:10.3389/fpls.2022.931877