دورية أكاديمية

Akebia saponin D ameliorates metabolic syndrome (MetS) via remodeling gut microbiota and attenuating intestinal barrier injury

التفاصيل البيبلوغرافية
العنوان: Akebia saponin D ameliorates metabolic syndrome (MetS) via remodeling gut microbiota and attenuating intestinal barrier injury
المؤلفون: Song Yang, Ting Hu, He Liu, Ya-li Lv, Wen Zhang, Han Li, Lingling Xuan, Li-li Gong, Li-hong Liu
المصدر: Biomedicine & Pharmacotherapy, Vol 138, Iss , Pp 111441- (2021)
بيانات النشر: Elsevier, 2021.
سنة النشر: 2021
المجموعة: LCC:Therapeutics. Pharmacology
مصطلحات موضوعية: Akebia saponin D, Gut microbiota, Metabolic syndrome, Gut barrier, PPAR-γ-FABP4, Therapeutics. Pharmacology, RM1-950
الوصف: Metabolic syndrome (MetS) is a complex, multifactorial disease which lead to an increased risk of cardiovascular disease, type 2 diabetes, and stroke. However, selective, and potent drugs for the treatment of MetS are still lacking. Previous studies have found that Akebia saponin D (ASD) has beneficial effects on metabolic diseases such as obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Therefore, our study was designed to determine the effect and mechanism of action of ASD against MetS in a high-fat diet (HFD) induced mouse model. ASD significantly decreased plasma lipid and insulin resistance in these mice, and a targeted approach using metabolomic analyses of plasma and feces indicated that glucose and lipids in these mice crossed the damaged intestinal barrier into circulation. Furthermore, ASD was able to increase lipid excretion and inhibit intestinal epithelial lipid absorption. Results for gut microbiota composition showed that ASD significantly reduced HFD-associated Alistipes, Prevotella, and enhanced the proportions of Butyricimonas, Ruminococcus, and Bifidobacterium. After 14 weeks of ASD/fecal microbiota transplantation (FMT) interventions the developed gut barrier dysfunction was restored. Additionally, RNA-seq revealed that ASD reduced the lipid-induced tight junction (TJ) damage in intestinal epithelial cells via down-regulation of the PPAR-γ-FABP4 pathway in vitro and that use of the PPAR-γ inhibitor (T0070907) was able to partially block the effects of ASD, indicating that the PPAR-γ/FABP4 pathway is a critical mediator involved in the improvement of MetS. Our results demonstrated that ASD not only modifies the gut microbiome but also ameliorates the HFD-induced gut barrier disruption via down-regulation of the PPAR-γ-FABP4 pathway. These findings suggest a promising, and novel therapeutic strategy for gut protection against MetS.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 0753-3322
Relation: http://www.sciencedirect.com/science/article/pii/S0753332221002262; https://doaj.org/toc/0753-3322
DOI: 10.1016/j.biopha.2021.111441
URL الوصول: https://doaj.org/article/5ec5e42f56174a5fab01669d58f61709
رقم الأكسشن: edsdoj.5ec5e42f56174a5fab01669d58f61709
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:07533322
DOI:10.1016/j.biopha.2021.111441