دورية أكاديمية

Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus

التفاصيل البيبلوغرافية
العنوان: Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus
المؤلفون: Shweta Tripathi, Anita Verma, Sushil K. Jha
المصدر: Frontiers in Cellular Neuroscience, Vol 14 (2020)
بيانات النشر: Frontiers Media S.A., 2020.
سنة النشر: 2020
المجموعة: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
مصطلحات موضوعية: appetitive conditioning, cell proliferation, hippocampal neurogenesis, trace, delay conditioning, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
الوصف: Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1662-5102
Relation: https://www.frontiersin.org/article/10.3389/fncel.2020.00089/full; https://doaj.org/toc/1662-5102
DOI: 10.3389/fncel.2020.00089
URL الوصول: https://doaj.org/article/ac5fb6da35a34245bb3d8020e235efd8
رقم الأكسشن: edsdoj.5fb6da35a34245bb3d8020e235efd8
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16625102
DOI:10.3389/fncel.2020.00089