دورية أكاديمية

Plant species and soil depth differentially affect microbial diversity and function in grasslands

التفاصيل البيبلوغرافية
العنوان: Plant species and soil depth differentially affect microbial diversity and function in grasslands
المؤلفون: Kerry B. Ryan, Alexandre De Menezes, John A. Finn, Fiona P. Brennan
المصدر: Journal of Sustainable Agriculture and Environment, Vol 2, Iss 4, Pp 397-411 (2023)
بيانات النشر: Wiley, 2023.
سنة النشر: 2023
المجموعة: LCC:Agriculture (General)
LCC:Environmental sciences
مصطلحات موضوعية: soil carbon cycling, soil depth, soil enzyme activities, soil microbial communities, soil–plant interactions, Agriculture (General), S1-972, Environmental sciences, GE1-350
الوصف: Abstract Introduction Grassland ecosystems are a major store of terrestrial carbon (C), yet little is known about their capacity to cycle and store C in deeper soil horizons. Further, it is unclear how plant community composition within agricultural grasslands mediates this capacity and influences microbial community composition. We investigated whether the aboveground community composition in intensively managed agricultural grasslands influenced belowground microbial community composition, abundance, respiration and enzyme activities with depth. Materials and Methods Soil was sampled in four soil layers: A (0–15 cm), B (15–30 cm), C (30–60 cm) and D (60–90 cm) in monocultures of six grassland species and a mixture of all six. Functional capacity was measured through enzymatic and substrate‐induced respiration assays, and microbial abundance and diversity were assessed via quantitative polymerase chain reaction and sequencing (16S, Internal transcribed spacer), respectively. Results Microbial abundance and C cycling enzyme activity decreased and community composition changed, along the soil depth gradient, regardless of the plant community. Microbial abundance was not significantly influenced by plant community type across the entire soil depth profile. However, prokaryotic community composition was significantly influenced by plant community in the top 15 cm of soil, and fungal community composition was significantly influenced between 15 and 30 cm in depth. Plant community types mediated the rate at which C cycling enzyme activity decreased along the soil depth gradient, and selected C cycling enzymes were significantly more active at 15–60 cm depth when Cichorium intybus (a deep rooting species) was present. Conclusion This study provides an improved understanding of how agricultural grassland communities affect the soil microbiome with depth; this has potential implications for the management of these systems for enhanced soil health. Our work indicates the potential for multispecies mixtures with deep rooting species to be a practical strategy to increase C cycling capacity in deeper soil layers within grasslands, which may have implications for policy goals related to C storage.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2767-035X
Relation: https://doaj.org/toc/2767-035X
DOI: 10.1002/sae2.12077
URL الوصول: https://doaj.org/article/66dd5ddfbb9b4ddca1d7919c7c415dd6
رقم الأكسشن: edsdoj.66dd5ddfbb9b4ddca1d7919c7c415dd6
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:2767035X
DOI:10.1002/sae2.12077