دورية أكاديمية

Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy

التفاصيل البيبلوغرافية
العنوان: Innovative aerosol hygroscopic growth study from Mie–Raman–fluorescence lidar and microwave radiometer synergy
المؤلفون: R. Miri, O. Pujol, Q. Hu, P. Goloub, I. Veselovskii, T. Podvin, F. Ducos
المصدر: Atmospheric Measurement Techniques, Vol 17, Pp 3367-3375 (2024)
بيانات النشر: Copernicus Publications, 2024.
سنة النشر: 2024
المجموعة: LCC:Environmental engineering
LCC:Earthwork. Foundations
مصطلحات موضوعية: Environmental engineering, TA170-171, Earthwork. Foundations, TA715-787
الوصف: This study focuses on the characterization of aerosol hygroscopicity using remote sensing techniques. We employ a Mie–Raman–fluorescence lidar (Lille Lidar for Atmospheric Study, LILAS), developed at the ATOLL platform, Laboratoire d'Optique Atmosphérique, Lille, France, in combination with the RPG-HATPRO-G5 microwave radiometer to enable continuous aerosol and water vapor monitoring. We identify hygroscopic growth cases when an aerosol layer exhibits an increase in both aerosol backscattering coefficient and relative humidity. By examining the fluorescence backscattering coefficient, which remains unaffected by the presence of water vapor, the potential temperature, and the absolute humidity, we verify the homogeneity of the aerosol layer. Consequently, the change in the backscattering coefficient is solely attributed to water uptake. The Hänel theory is employed to describe the evolution of the backscattering coefficient with relative humidity and introduces a hygroscopic coefficient, γ, which depends on the aerosol type. The particularity of this method revolves around the use of the fluorescence which is employed to take into account and correct the aerosol concentration variations in the layer. Case studies conducted on 29 July and 9 March 2021 examine, respectively, an urban and a smoke aerosol layer. For the urban case, γ is estimated as 0.47 ± 0.03 at 532 nm; as for the smoke case, the estimation of γ is 0.5 ± 0.3. These values align with those reported in the literature for urban and smoke particles. Our findings highlight the efficiency of the Mie–Raman–fluorescence lidar and microwave radiometer synergy in characterizing aerosol hygroscopicity. The results contribute to advance our understanding of atmospheric processes, aerosol–cloud interactions, and climate modeling.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 3367-2024
1867-1381
1867-8548
Relation: https://amt.copernicus.org/articles/17/3367/2024/amt-17-3367-2024.pdf; https://doaj.org/toc/1867-1381; https://doaj.org/toc/1867-8548
DOI: 10.5194/amt-17-3367-2024
URL الوصول: https://doaj.org/article/6785a872bb0f4cfbb7fd4209f84a1995
رقم الأكسشن: edsdoj.6785a872bb0f4cfbb7fd4209f84a1995
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:33672024
18671381
18678548
DOI:10.5194/amt-17-3367-2024