دورية أكاديمية

Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation

التفاصيل البيبلوغرافية
العنوان: Whole-genome resequencing of Chinese indigenous sheep provides insight into the genetic basis underlying climate adaptation
المؤلفون: Meilin Jin, Huihua Wang, Gang Liu, Jian Lu, Zehu Yuan, Taotao Li, Engming Liu, Zengkui Lu, Lixin Du, Caihong Wei
المصدر: Genetics Selection Evolution, Vol 56, Iss 1, Pp 1-14 (2024)
بيانات النشر: BMC, 2024.
سنة النشر: 2024
المجموعة: LCC:Animal culture
LCC:Genetics
مصطلحات موضوعية: Animal culture, SF1-1100, Genetics, QH426-470
الوصف: Abstract Background Chinese indigenous sheep are valuable resources with unique features and characteristics. They are distributed across regions with different climates in mainland China; however, few reports have analyzed the environmental adaptability of sheep based on their genome. We examined the variants and signatures of selection involved in adaptation to extreme humidity, altitude, and temperature conditions in 173 sheep genomes from 41 phenotypically and geographically representative Chinese indigenous sheep breeds to characterize the genetic basis underlying environmental adaptation in these populations. Results Based on the analysis of population structure, we inferred that Chinese indigenous sheep are divided into four groups: Kazakh (KAZ), Mongolian (MON), Tibetan (TIB), and Yunnan (YUN). We also detected a set of candidate genes that are relevant to adaptation to extreme environmental conditions, such as drought-prone regions (TBXT, TG, and HOXA1), high-altitude regions (DYSF, EPAS1, JAZF1, PDGFD, and NF1) and warm-temperature regions (TSHR, ABCD4, and TEX11). Among all these candidate genes, eight ABCD4, CNTN4, DOCK10, LOC105608545, LOC121816479, SEM3A, SVIL, and TSHR overlap between extreme environmental conditions. The TSHR gene shows a strong signature for positive selection in the warm-temperature group and harbors a single nucleotide polymorphism (SNP) missense mutation located between positions 90,600,001 and 90,650,001 on chromosome 7, which leads to a change in the protein structure of TSHR and influences its stability. Conclusions Analysis of the signatures of selection uncovered genes that are likely related to environmental adaptation and a SNP missense mutation in the TSHR gene that affects the protein structure and stability. It also provides information on the evolution of the phylogeographic structure of Chinese indigenous sheep populations. These results provide important genetic resources for future breeding studies and new perspectives on how animals can adapt to climate change.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: German
English
French
تدمد: 1297-9686
Relation: https://doaj.org/toc/1297-9686
DOI: 10.1186/s12711-024-00880-z
URL الوصول: https://doaj.org/article/67abee9214824205a557c334fabf21b9
رقم الأكسشن: edsdoj.67abee9214824205a557c334fabf21b9
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:12979686
DOI:10.1186/s12711-024-00880-z