دورية أكاديمية

Simulation studies on the responses of ZnO-CuO/CNT nanocomposite based SAW sensor to various volatile organic chemicals

التفاصيل البيبلوغرافية
العنوان: Simulation studies on the responses of ZnO-CuO/CNT nanocomposite based SAW sensor to various volatile organic chemicals
المؤلفون: Nelsa Abraham, R. Reshma Krishnakumar, C. Unni, Daizy Philip
المصدر: Journal of Science: Advanced Materials and Devices, Vol 4, Iss 1, Pp 125-131 (2019)
بيانات النشر: Elsevier, 2019.
سنة النشر: 2019
المجموعة: LCC:Materials of engineering and construction. Mechanics of materials
مصطلحات موضوعية: Materials of engineering and construction. Mechanics of materials, TA401-492
الوصف: Surface acoustic wave (SAW) sensors offer a sensitive platform for monitoring important physical entities with several advantages. They can operate well in extreme conditions such as high temperature, high pressure and toxic environment. This work presents a 2D model of SAW sensor with carbon nano tubes (CNT) as the adsorbent material. A second model was also created by incorporating ZnO and CuO nanospheres into the sensing layer. The responses of the two sensors towards various gases were analysed at room temperature. The design was modelled and analysed using COMSOL Multiphysics software which applies the finite element analysis to solve for Eigen frequencies. The shift in the resonant frequencies with and without the presence of gases, which is a measure of sensitivity has been estimated for all the gases. The second model showed improved response. This novel ZnO-CuO/CNT SAW sensor combining the sensing properties of metal oxide nanostructures and CNT with improved characteristics can be used as a promising candidate for sensing important volatile organic chemicals at room temperature. Keywords: ZnO, CuO, Surface acoustic waves, Sensors, Carbon nano tubes
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2468-2179
Relation: http://www.sciencedirect.com/science/article/pii/S246821791830217X; https://doaj.org/toc/2468-2179
DOI: 10.1016/j.jsamd.2018.12.006
URL الوصول: https://doaj.org/article/c67f0eb736ad40d18f5c6e76bee8d906
رقم الأكسشن: edsdoj.67f0eb736ad40d18f5c6e76bee8d906
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:24682179
DOI:10.1016/j.jsamd.2018.12.006