دورية أكاديمية

Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance.

التفاصيل البيبلوغرافية
العنوان: Acinetobacter baumannii Repeatedly Evolves a Hypermutator Phenotype in Response to Tigecycline That Effectively Surveys Evolutionary Trajectories to Resistance.
المؤلفون: Troy G Hammerstrom, Kathryn Beabout, Thomas P Clements, Gerda Saxer, Yousif Shamoo
المصدر: PLoS ONE, Vol 10, Iss 10, p e0140489 (2015)
بيانات النشر: Public Library of Science (PLoS), 2015.
سنة النشر: 2015
المجموعة: LCC:Medicine
LCC:Science
مصطلحات موضوعية: Medicine, Science
الوصف: The evolution of hypermutators in response to antibiotic treatment in both clinical and laboratory settings provides a unique context for the study of adaptive evolution. With increased mutation rates, the number of hitchhiker mutations within an evolving hypermutator population is remarkably high and presents substantial challenges in determining which mutations are adaptive. Intriguingly however, hypermutators also provide an opportunity to explore deeply the accessible evolutionary trajectories that lead to increased organism fitness, in this case the evolution of antibiotic resistance to the clinically relevant antibiotic tigecycline by the hospital pathogen Acinetobacter baumannii. Using a continuous culture system, AB210M, a clinically derived strain of A. baumannii, was evolved to tigecycline resistance. Analysis of the adapted populations showed that nearly all the successful lineages became hypermutators via movement of a mobile element to inactivate mutS. In addition, metagenomic analysis of population samples revealed another 896 mutations that occurred at a frequency greater than 5% in the population, while 38 phenotypically distinct individual colonies harbored a total of 1712 mutations. These mutations were scattered throughout the genome and affected ~40% of the coding sequences. The most highly mutated gene was adeS, a known tigecycline-resistance gene; however, adeS was not solely responsible for the high level of TGC resistance. Sixteen other genes stood out as potentially relevant to increased resistance. The five most prominent candidate genes (adeS, rpsJ, rrf, msbA, and gna) consistently re-emerged in subsequent replicate population studies suggesting they are likely to play a role in adaptation to tigecycline. Interestingly, the repeated evolution of a hypermutator phenotype in response to antibiotic stress illustrates not only a highly adaptive strategy to resistance, but also a remarkably efficient survey of successful evolutionary trajectories.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1932-6203
Relation: http://europepmc.org/articles/PMC4619398?pdf=render; https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0140489
URL الوصول: https://doaj.org/article/dc68f5f9c09b49339d68c1fa7f72eec3
رقم الأكسشن: edsdoj.68f5f9c09b49339d68c1fa7f72eec3
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19326203
DOI:10.1371/journal.pone.0140489