دورية أكاديمية

A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles

التفاصيل البيبلوغرافية
العنوان: A Retrospective of Project Robo Raven: Developing New Capabilities for Enhancing the Performance of Flapping Wing Aerial Vehicles
المؤلفون: Hugh A. Bruck, Satyandra K. Gupta
المصدر: Biomimetics, Vol 8, Iss 6, p 485 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Technology
مصطلحات موضوعية: flapping wing air vehicles, bioinspired robotics, autonomous robots, multifunctional wings, independent wing control, Technology
الوصف: Flapping Wing Air Vehicles (FWAVs) have proven to be attractive alternatives to fixed wing and rotary air vehicles at low speeds because of their bio-inspired ability to hover and maneuver. However, in the past, they have not been able to reach their full potential due to limitations in wing control and payload capacity, which also has limited endurance. Many previous FWAVs used a single actuator that couples and synchronizes motions of the wings to flap both wings, resulting in only variable rate flapping control at a constant amplitude. Independent wing control is achieved using two servo actuators that enable wing motions for FWAVs by programming positions and velocities to achieve desired wing shapes and associated aerodynamic forces. However, having two actuators integrated into the flying platform significantly increases its weight and makes it more challenging to achieve flight than a single actuator. This article presents a retrospective overview of five different designs from the “Robo Raven” family based on our previously published work. The first FWAVs utilize two servo motors to achieve independent wing control. The basic platform is capable of successfully performing dives, flips, and button hook turns, which demonstrates the potential maneuverability afforded by the independently actuated and controlled wings. Subsequent designs in the Robo Raven family were able to use multifunctional wings to harvest solar energy to overcome limitations on endurance, use on-board decision-making capabilities to perform maneuvers autonomously, and use mixed-mode propulsion to increase payload capacity by exploiting the benefits of fixed and flapping wing flight. This article elucidates how each successive version of the Robo Raven platform built upon the findings from previous generations. The Robo Raven family collectively addresses requirements related to control autonomy, energy autonomy, and maneuverability. We conclude this article by identifying new opportunities for research in avian-scale flapping wing aerial vehicles.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2313-7673
Relation: https://www.mdpi.com/2313-7673/8/6/485; https://doaj.org/toc/2313-7673
DOI: 10.3390/biomimetics8060485
URL الوصول: https://doaj.org/article/d746b643469b40fa897716cad0a7cef4
رقم الأكسشن: edsdoj.746b643469b40fa897716cad0a7cef4
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:23137673
DOI:10.3390/biomimetics8060485