دورية أكاديمية

Engineering of methionine-auxotroph Escherichia coli via parallel evolution of two enzymes from Corynebacterium glutamicum's direct-sulfurylation pathway enables its recovery in minimal medium

التفاصيل البيبلوغرافية
العنوان: Engineering of methionine-auxotroph Escherichia coli via parallel evolution of two enzymes from Corynebacterium glutamicum's direct-sulfurylation pathway enables its recovery in minimal medium
المؤلفون: Matan Gabay, Inbar Stern, Nadya Gruzdev, Adi Cohen, Lucia Adriana-Lifshits, Tamar Ansbacher, Itamar Yadid, Maayan Gal
المصدر: Metabolic Engineering Communications, Vol 18, Iss , Pp e00236- (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
المجموعة: LCC:Biotechnology
LCC:Biology (General)
مصطلحات موضوعية: Methionine biosynthesis, Directed enzyme evolution, Direct-sulfurylation, L-homoserine O-Acetyltransferases, O-acetyl homoserine sulfhydrylase, Escherichia coli, Biotechnology, TP248.13-248.65, Biology (General), QH301-705.5
الوصف: Methionine biosynthesis relies on the sequential catalysis of multiple enzymes. Escherichia coli, the main bacteria used in research and industry for protein production and engineering, utilizes the three-step trans-sulfurylation pathway catalyzed by L-homoserine O-succinyl transferase, cystathionine gamma synthase and cystathionine beta lyase to convert L-homoserine to L-homocysteine. However, most bacteria employ the two-step direct-sulfurylation pathway involving L-homoserine O-acetyltransferases and O-acetyl homoserine sulfhydrylase. We previously showed that a methionine-auxotroph Escherichia coli strain (MG1655) with deletion of metA, encoding for L-homoserine O-succinyl transferase, and metB, encoding for cystathionine gamma synthase, could be complemented by introducing the genes metX, encoding for L-homoserine O-acetyltransferases and metY, encoding for O-acetyl homoserine sulfhydrylase, from various sources, thus altering the Escherichia coli methionine biosynthesis metabolic pathway to direct-sulfurylation. However, introducing metX and metY from Corynebacterium glutamicum failed to complement methionine auxotrophy. Herein, we generated a randomized genetic library based on the metX and metY of Corynebacterium glutamicum and transformed it into a methionine-auxotrophic Escherichia coli strain lacking the metA and metB genes. Through multiple enrichment cycles, we successfully isolated active clones capable of growing in M9 minimal media. The dominant metX mutations in the evolved methionine-autotrophs Escherichia coli were L315P and H46R. Interestingly, we found that a metY gene encoding only the N-terminus 106 out of 438 amino acids of the wild-type MetY enzyme is functional and supports the growth of the methionine auxotroph. Recloning the new genes into the original plasmid and transforming them to methionine auxotroph Escherichia coli validated their functionality. These results show that directed enzyme-evolution enables fast and simultaneous engineering of new active variants within the Escherichia coli methionine direct-sulfurylation pathway, leading to efficient complementation.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2214-0301
Relation: http://www.sciencedirect.com/science/article/pii/S2214030124000051; https://doaj.org/toc/2214-0301
DOI: 10.1016/j.mec.2024.e00236
URL الوصول: https://doaj.org/article/e74e3d9244514298b81baef3b4f1230d
رقم الأكسشن: edsdoj.74e3d9244514298b81baef3b4f1230d
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22140301
DOI:10.1016/j.mec.2024.e00236