دورية أكاديمية

Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy

التفاصيل البيبلوغرافية
العنوان: Unveiling the Stacking Fault-Driven Phase Transition Delaying Cryogenic Fracture in Fe-Co-Cr-Ni-Mo-C-Based Medium-Entropy Alloy
المؤلفون: Hui Ding, Zhenhang Du, Haifeng Zhang, Yu Liu, Shiteng Zhao, Yonggang Yang, Changjun Wang, Simin Lei, Ruming Geng, Chunxu Wang
المصدر: Materials, Vol 17, Iss 11, p 2502 (2024)
بيانات النشر: MDPI AG, 2024.
سنة النشر: 2024
المجموعة: LCC:Technology
LCC:Electrical engineering. Electronics. Nuclear engineering
LCC:Engineering (General). Civil engineering (General)
LCC:Microscopy
LCC:Descriptive and experimental mechanics
مصطلحات موضوعية: medium-entropy alloy, cryogenic behavior, twinning, phase transition, stacking fault energy, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
الوصف: In this work, the tensile deformation mechanisms of the Fe55Co17.5Cr12.5Ni10Mo5−xCx-based medium-entropy alloy at room temperature (R.T.), 77 K, and 4.2 K are studied. The formation of micro-defects and martensitic transformation to delay the cryogenic fracture are observed. The results show that FeCoCrNiMo5−xCx-based alloys exhibit outstanding mechanical properties under cryogenic conditions. Under an R.T. condition, the primary contributing mechanism of strain hardening is twinning-induced plasticity (TWIP), whereas at 77 K and 4.2 K, the activation of martensitic transformation-induced plasticity (TRIP) becomes the main strengthening mechanism during cryogenic tensile deformation. Additionally, the carbide precipitation along with increased dislocation density can significantly improve yield and tensile strength. Furthermore, the marked reduction in stacking fault energy (SFE) at cryogenic temperatures can promote mechanisms such as twinning and martensitic transformations, which are pivotal for enhancing ductility under extreme conditions. The Mo4C1 alloy obtains the optimal strength–ductility combination at cryogenic-to-room temperatures. The tensile strength and elongation of the Mo4C1 alloy are 776 MPa and 50.5% at R.T., 1418 MPa and 71.2% in liquid nitrogen 77 K, 1670 MPa and 80.0% in liquid helium 4.2 K, respectively.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1944
Relation: https://www.mdpi.com/1996-1944/17/11/2502; https://doaj.org/toc/1996-1944
DOI: 10.3390/ma17112502
URL الوصول: https://doaj.org/article/783b37485b074341bdf6c1c4ab5aaed3
رقم الأكسشن: edsdoj.783b37485b074341bdf6c1c4ab5aaed3
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961944
DOI:10.3390/ma17112502