دورية أكاديمية

Synergistic Application of Multiple Machine Learning Algorithms and Hyperparameter Optimization Strategies for Net Ecosystem Productivity Prediction in Southeast Asia

التفاصيل البيبلوغرافية
العنوان: Synergistic Application of Multiple Machine Learning Algorithms and Hyperparameter Optimization Strategies for Net Ecosystem Productivity Prediction in Southeast Asia
المؤلفون: Chaoqing Huang, Bin Chen, Chuanzhun Sun, Yuan Wang, Junye Zhang, Huan Yang, Shengbiao Wu, Peiyue Tu, MinhThu Nguyen, Song Hong, Chao He
المصدر: Remote Sensing, Vol 16, Iss 1, p 17 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Science
مصطلحات موضوعية: machine-learning algorithms, hyperparameter optimization, remote sensing, Southeast Asia, net ecosystem productivity, Science
الوصف: The spatiotemporal patterns and shifts of net ecosystem productivity (NEP) play a pivotal role in ecological conservation and addressing climate change. For example, by quantifying the NEP information within ecosystems, we can achieve the protection and restoration of natural ecological balance. Monitoring the changes in NEP enables a more profound understanding and prediction of ecosystem alterations caused by global warming, thereby providing a scientific basis for formulating policies aimed at mitigating and adapting to climate change. The accurate prediction of NEP sheds light on the ecosystem’s response to climatic variations and aids in formulating targeted carbon sequestration policies. While traditional ecological process models provide a comprehensive approach to predicting NEP, they often require extensive experimental and empirical data, increasing research costs. In contrast, machine-learning models offer a cost-effective alternative for NEP prediction; however, the delicate balance in algorithm selection and hyperparameter tuning is frequently overlooked. In our quest for the optimal prediction model, we examined a combination of four mainstream machine-learning algorithms with four hyperparameter-optimization techniques. Our analysis identified that the backpropagation neural network combined with Bayesian optimization yielded the best performance, with an R2 of 0.68 and an MSE of 1.43. Additionally, deep-learning models showcased promising potential in NEP prediction. Selecting appropriate algorithms and executing precise hyperparameter-optimization strategies are crucial for enhancing the accuracy of NEP predictions. This approach not only improves model performance but also provides us with new tools for a deeper understanding of and response to ecosystem changes induced by climate change.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2072-4292
Relation: https://www.mdpi.com/2072-4292/16/1/17; https://doaj.org/toc/2072-4292
DOI: 10.3390/rs16010017
URL الوصول: https://doaj.org/article/795270cfd6b1474284c87b37601b745c
رقم الأكسشن: edsdoj.795270cfd6b1474284c87b37601b745c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20724292
DOI:10.3390/rs16010017