دورية أكاديمية

Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles

التفاصيل البيبلوغرافية
العنوان: Development of Non Expensive Technologies for Precise Maneuvering of Completely Autonomous Unmanned Aerial Vehicles
المؤلفون: Luca Bigazzi, Stefano Gherardini, Giacomo Innocenti, Michele Basso
المصدر: Sensors, Vol 21, Iss 2, p 391 (2021)
بيانات النشر: MDPI AG, 2021.
سنة النشر: 2021
المجموعة: LCC:Chemical technology
مصطلحات موضوعية: aircraft navigation, automatic control, computer vision, sensor fusion, unmanned aerial vehicles, Chemical technology, TP1-1185
الوصف: In this paper, solutions for precise maneuvering of an autonomous small (e.g., 350-class) Unmanned Aerial Vehicles (UAVs) are designed and implemented from smart modifications of non expensive mass market technologies. The considered class of vehicles suffers from light load, and, therefore, only a limited amount of sensors and computing devices can be installed on-board. Then, to make the prototype capable of moving autonomously along a fixed trajectory, a “cyber-pilot”, able on demand to replace the human operator, has been implemented on an embedded control board. This cyber-pilot overrides the commands thanks to a custom hardware signal mixer. The drone is able to localize itself in the environment without ground assistance by using a camera possibly mounted on a 3 Degrees Of Freedom (DOF) gimbal suspension. A computer vision system elaborates the video stream pointing out land markers with known absolute position and orientation. This information is fused with accelerations from a 6-DOF Inertial Measurement Unit (IMU) to generate a “virtual sensor” which provides refined estimates of the pose, the absolute position, the speed and the angular velocities of the drone. Due to the importance of this sensor, several fusion strategies have been investigated. The resulting data are, finally, fed to a control algorithm featuring a number of uncoupled digital PID controllers which work to bring to zero the displacement from the desired trajectory.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1424-8220
Relation: https://www.mdpi.com/1424-8220/21/2/391; https://doaj.org/toc/1424-8220
DOI: 10.3390/s21020391
URL الوصول: https://doaj.org/article/7d24485265c4488aa8b270c45cb1c3dc
رقم الأكسشن: edsdoj.7d24485265c4488aa8b270c45cb1c3dc
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14248220
DOI:10.3390/s21020391