دورية أكاديمية

Selection and Validation of Reference Genes for Pan-Cancer in Platelets Based on RNA-Sequence Data

التفاصيل البيبلوغرافية
العنوان: Selection and Validation of Reference Genes for Pan-Cancer in Platelets Based on RNA-Sequence Data
المؤلفون: Xiaoxia Wen, Guishu Yang, Yongcheng Dong, Liping Luo, Bangrong Cao, Birga Anteneh Mengesha, Ruiling Zu, Yulin Liao, Chang Liu, Shi Li, Yao Deng, Kaijiong Zhang, Xin Ma, Jian Huang, Dongsheng Wang, Keyan Zhao, Ping Leng, Huaichao Luo
المصدر: Frontiers in Genetics, Vol 13 (2022)
بيانات النشر: Frontiers Media S.A., 2022.
سنة النشر: 2022
المجموعة: LCC:Genetics
مصطلحات موضوعية: platelets, reference genes, quantitative real time polymerase chain reaction, normalization, pan-cancer, Genetics, QH426-470
الوصف: Many studies in recent years have demonstrated that some messenger RNA (mRNA) in platelets can be used as biomarkers for the diagnosis of pan-cancer. The quantitative real-time polymerase chain reaction (RT-qPCR) molecular technique is most commonly used to determine mRNA expression changes in platelets. Accurate and reliable relative RT-qPCR is highly dependent on reliable reference genes. However, there is no study to validate the reference gene in platelets for pan-cancer. Given that the expression of some commonly used reference genes is altered in certain conditions, selecting and verifying the most suitable reference gene for pan-cancer in platelets is necessary to diagnose early stage cancer. This study performed bioinformatics and functional analysis from the RNA-seq of platelets data set (GSE68086). We generated 95 candidate reference genes after the primary bioinformatics step. Seven reference genes (YWHAZ, GNAS, GAPDH, OAZ1, PTMA, B2M, and ACTB) were screened out among the 95 candidate reference genes from the data set of the platelets’ transcriptome of pan-cancer and 73 commonly known reference genes. These candidate reference genes were verified by another platelets expression data set (GSE89843). Then, we used RT-qPCR to confirm the expression levels of these seven genes in pan-cancer patients and healthy individuals. These RT-qPCR results were analyzed using the internal stability analysis software programs (the comparative Delta CT method, geNorm, NormFinder, and BestKeeper) to rank the candidate genes in the order of decreasing stability. By contrast, the GAPDH gene was stably and constitutively expressed at high levels in all the tested samples. Therefore, GAPDH was recommended as the most suitable reference gene for platelet transcript analysis. In conclusion, our result may play an essential part in establishing a molecular diagnostic platform based on the platelets to diagnose pan-cancer.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1664-8021
Relation: https://www.frontiersin.org/articles/10.3389/fgene.2022.913886/full; https://doaj.org/toc/1664-8021
DOI: 10.3389/fgene.2022.913886
URL الوصول: https://doaj.org/article/d7ea6691618c4abcb25ac416ec0d95de
رقم الأكسشن: edsdoj.7ea6691618c4abcb25ac416ec0d95de
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:16648021
DOI:10.3389/fgene.2022.913886