دورية أكاديمية

Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR Images

التفاصيل البيبلوغرافية
العنوان: Learning Polar Encodings for Arbitrary-Oriented Ship Detection in SAR Images
المؤلفون: Yishan He, Fei Gao, Jun Wang, Amir Hussain, Erfu Yang, Huiyu Zhou
المصدر: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 14, Pp 3846-3859 (2021)
بيانات النشر: IEEE, 2021.
سنة النشر: 2021
المجموعة: LCC:Ocean engineering
LCC:Geophysics. Cosmic physics
مصطلحات موضوعية: Arbitrary-orientated, polar encodings, ship detection, synthetic aperture radar (SAR), Ocean engineering, TC1501-1800, Geophysics. Cosmic physics, QC801-809
الوصف: Common horizontal bounding box-based methods are not capable of accurately locating slender ship targets with arbitrary orientations in synthetic aperture radar (SAR) images. Therefore, in recent years, methods based on oriented bounding box (OBB) have gradually received attention from researchers. However, most of the recently proposed deep learning-based methods for OBB detection encounter the boundary discontinuity problem in angle or key point regression. In order to alleviate this problem, researchers propose to introduce some manually set parameters or extra network branches for distinguishing the boundary cases, which make training more difficult and lead to performance degradation. In this article, in order to solve the boundary discontinuity problem in OBB regression, we propose to detect SAR ships by learning polar encodings. The encoding scheme uses a group of vectors pointing from the center of the ship target to the boundary points to represent an OBB. The boundary discontinuity problem is avoided by training and inference directly according to the polar encodings. In addition, we propose an intersect over union (IOU)-weighted regression loss, which further guides the training of polar encodings through the IOU metric and improves the detection performance. Comparative experiments on the benchmark Rotating SAR Ship Detection Dataset (RSSDD) demonstrate the effectiveness of our proposed method in terms of enhanced detection performance over state-of-the-art algorithms and other OBB encoding schemes.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2151-1535
Relation: https://ieeexplore.ieee.org/document/9385869/; https://doaj.org/toc/2151-1535
DOI: 10.1109/JSTARS.2021.3068530
URL الوصول: https://doaj.org/article/7f1d36ef90f840e8a76c852c2073fdbb
رقم الأكسشن: edsdoj.7f1d36ef90f840e8a76c852c2073fdbb
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:21511535
DOI:10.1109/JSTARS.2021.3068530