دورية أكاديمية

Effective BMP-2 Release and Mineralization on a Graphene Oxide/Polyvinylpyrrolidone Hydrogel Forming Poly (ε-Caprolactone) Nanofibrous Scaffolds

التفاصيل البيبلوغرافية
العنوان: Effective BMP-2 Release and Mineralization on a Graphene Oxide/Polyvinylpyrrolidone Hydrogel Forming Poly (ε-Caprolactone) Nanofibrous Scaffolds
المؤلفون: Jin-Oh Jeong, Sung-In Jeong, Youn-Mook Lim, Jong-Seok Park
المصدر: Materials, Vol 15, Iss 23, p 8642 (2022)
بيانات النشر: MDPI AG, 2022.
سنة النشر: 2022
المجموعة: LCC:Technology
LCC:Electrical engineering. Electronics. Nuclear engineering
LCC:Engineering (General). Civil engineering (General)
LCC:Microscopy
LCC:Descriptive and experimental mechanics
مصطلحات موضوعية: PCL nanofibrous scaffolds, drug delivery, gamma-ray irradiation, hydrogel, graphene oxide, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
الوصف: PCL nanofibrous scaffolds are widely used as bone scaffolds, and they can increase the efficiency of bone regeneration by loading drugs and/or growth factors onto them. However, to obtain a more effective bone regeneration effect, it is necessary to increase drug loading and release efficiency. In this study, conductive hydrogel forming nanofibrous scaffolds were prepared to increase drug efficiency. GO has an excellent conductivity and biocompatibility, making it an efficient conductive polymer for bone differentiation. Electrospun PCL was immersed in a mixed solution of GO and PVP and then crosslinked using gamma-ray irradiation. It was confirmed that GO/PVP-PCL was successfully prepared through its characterization (morphology, thermal, chemical, electrical, and biological properties). In addition, drug-release efficiency was confirmed by electrical stimulation after loading the sample with BMP-2, a bone-regeneration growth factor. Compared to PCL, it was confirmed that GO/PVP-PCL has an approximately 20% improved drug-release efficiency and an excellent mineralization of the scaffolds using SBF. After culturing MG63 cells on GO/PVP-PCL, a high effect on osteodifferentiation was confirmed by ALP activity. Therefore, GO/PVP-PCL prepared by a gamma-ray-induced crosslinking reaction is expected to be used as biomaterial for bone-tissue engineering.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1944
Relation: https://www.mdpi.com/1996-1944/15/23/8642; https://doaj.org/toc/1996-1944
DOI: 10.3390/ma15238642
URL الوصول: https://doaj.org/article/8192d3257cc3494c8ebfb14e0d6eb629
رقم الأكسشن: edsdoj.8192d3257cc3494c8ebfb14e0d6eb629
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961944
DOI:10.3390/ma15238642