دورية أكاديمية

Near-Infrared (NIR) Silver Sulfide (Ag2S) Semiconductor Photocatalyst Film for Degradation of Methylene Blue Solution

التفاصيل البيبلوغرافية
العنوان: Near-Infrared (NIR) Silver Sulfide (Ag2S) Semiconductor Photocatalyst Film for Degradation of Methylene Blue Solution
المؤلفون: Zahrah Ramadlan Mubarokah, Norsuria Mahmed, Mohd Natashah Norizan, Ili Salwani Mohamad, Mohd Mustafa Al Bakri Abdullah, Katarzyna Błoch, Marcin Nabiałek, Madalina Simona Baltatu, Andrei Victor Sandu, Petrica Vizureanu
المصدر: Materials, Vol 16, Iss 1, p 437 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Technology
LCC:Electrical engineering. Electronics. Nuclear engineering
LCC:Engineering (General). Civil engineering (General)
LCC:Microscopy
LCC:Descriptive and experimental mechanics
مصطلحات موضوعية: near-infrared irradiation, silver sulfide, cellulose film, photocatalysis, methylene blue, Technology, Electrical engineering. Electronics. Nuclear engineering, TK1-9971, Engineering (General). Civil engineering (General), TA1-2040, Microscopy, QH201-278.5, Descriptive and experimental mechanics, QC120-168.85
الوصف: A silver sulfide (Ag2S) semiconductor photocatalyst film has been successfully synthesized using a solution casting method. To produce the photocatalyst films, two types of Ag2S powder were used: a commercialized and synthesized powder. For the commercialized powder (CF/comAg2S), the Ag2S underwent a rarefaction process to reduce its crystallite size from 52 nm to 10 nm, followed by incorporation into microcrystalline cellulose using a solution casting method under the presence of an alkaline/urea solution. A similar process was applied to the synthesized Ag2S powder (CF/syntAg2S), resulting from the co-precipitation process of silver nitrate (AgNO3) and thiourea. The prepared photocatalyst films and their photocatalytic efficiency were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and UV-visible spectroscopy (UV-Vis). The results showed that the incorporation of the Ag2S powder into the cellulose films could reduce the peak intensity of the oxygen-containing functional group, which indicated the formation of a composite film. The study of the crystal structure confirmed that all of the as-prepared samples featured a monoclinic acanthite Ag2S structure with space group P21/C. It was found that the degradation rate of the methylene blue dye reached 100% within 2 h under sunlight exposure when using CF/comAg2S and 98.6% for the CF/syntAg2S photocatalyst film, and only 48.1% for the bare Ag2S powder. For the non-exposure sunlight samples, the degradation rate of only 33–35% indicated the importance of the semiconductor near-infrared (NIR) Ag2S photocatalyst used.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1996-1944
Relation: https://www.mdpi.com/1996-1944/16/1/437; https://doaj.org/toc/1996-1944
DOI: 10.3390/ma16010437
URL الوصول: https://doaj.org/article/82cbfb1908e7418f914d8a65af018ae1
رقم الأكسشن: edsdoj.82cbfb1908e7418f914d8a65af018ae1
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:19961944
DOI:10.3390/ma16010437