دورية أكاديمية

Teneurin C-Terminal Associated Peptide (TCAP)-3 Increases Metabolic Activity in Zebrafish

التفاصيل البيبلوغرافية
العنوان: Teneurin C-Terminal Associated Peptide (TCAP)-3 Increases Metabolic Activity in Zebrafish
المؤلفون: Ross M. Reid, Andrea L. Reid, David A. Lovejoy, Peggy R. Biga
المصدر: Frontiers in Marine Science, Vol 7 (2021)
بيانات النشر: Frontiers Media S.A., 2021.
سنة النشر: 2021
المجموعة: LCC:Science
LCC:General. Including nature conservation, geographical distribution
مصطلحات موضوعية: TCAP, mitochondria, resazurin, metabolism, teleost, Science, General. Including nature conservation, geographical distribution, QH1-199.5
الوصف: Teneurin C-terminal associated peptides (TCAP), bioactive peptides located on the C-terminal end of teneurin proteins, have been shown to regulate stress axis functions due to the high conservation between TCAP and corticotropin releasing factor (CRF). Additionally, recent work demonstrated that TCAP can increase metabolism in rats via glucose metabolism. These metabolic actions are not well described in other organisms, including teleosts. Here we investigated the expression of a tcap isoform, tcap-3, and the potential role of TCAP-3 as a regulator of metabolism across zebrafish life-stages. Using pcr-based analyses, tcap-3 appears to be independently transcribed, in relation to teneurin-3, in muscle tissue of adult zebrafish. Resazurin, respirometry chambers, and mitochondrial metabolism analyses were used to study the metabolic effects of synthetic rainbow trout TCAP-3 (rtTCAP-3) in larval and adult zebrafish. Overall, metabolic activity was enhanced by 48 h of rtTCAP-3 treatment in larvae (bath immersion) and adults (intraperitoneal injections). This metabolic activity increase was due to mitochondrial uncoupling, as mitochondrial respiration increase by rtTCAP-3 was due to proton leak. Additionally, rtTCAP-3 protected larval fish from reduced metabolic activity induced by low temperatures. Subsequently, rtTCAP-3 increased metabolic output in adult zebrafish subjected to accelerated swimming speeds, demonstrating the potent role of rtTCAP-3 in zebrafish metabolism regulation during metabolic challenges. Collectively, these results demonstrate the conserved roles for rtTCAP-3 as a metabolic activator in zebrafish.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2296-7745
Relation: https://www.frontiersin.org/articles/10.3389/fmars.2020.591160/full; https://doaj.org/toc/2296-7745
DOI: 10.3389/fmars.2020.591160
URL الوصول: https://doaj.org/article/8660a1315305414e96c5c98adb0d1876
رقم الأكسشن: edsdoj.8660a1315305414e96c5c98adb0d1876
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:22967745
DOI:10.3389/fmars.2020.591160