دورية أكاديمية

Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.

التفاصيل البيبلوغرافية
العنوان: Utilizing CMP-Sialic Acid Analogs to Unravel Neisseria gonorrhoeae Lipooligosaccharide-Mediated Complement Resistance and Design Novel Therapeutics.
المؤلفون: Sunita Gulati, Ian C Schoenhofen, Dennis M Whitfield, Andrew D Cox, Jianjun Li, Frank St Michael, Evgeny V Vinogradov, Jacek Stupak, Bo Zheng, Makoto Ohnishi, Magnus Unemo, Lisa A Lewis, Rachel E Taylor, Corinna S Landig, Sandra Diaz, George W Reed, Ajit Varki, Peter A Rice, Sanjay Ram
المصدر: PLoS Pathogens, Vol 11, Iss 12, p e1005290 (2015)
بيانات النشر: Public Library of Science (PLoS), 2015.
سنة النشر: 2015
المجموعة: LCC:Immunologic diseases. Allergy
LCC:Biology (General)
مصطلحات موضوعية: Immunologic diseases. Allergy, RC581-607, Biology (General), QH301-705.5
الوصف: Neisseria gonorrhoeae deploys a novel immune evasion strategy wherein the lacto-N-neotetraose (LNnT) structure of lipooligosaccharide (LOS) is capped by the bacterial sialyltransferase, using host cytidine-5'-monophosphate (CMP)-activated forms of the nine-carbon nonulosonate (NulO) sugar N-acetyl-neuraminic acid (Neu5Ac), a sialic acid (Sia) abundant in humans. This allows evasion of complement-mediated killing by recruiting factor H (FH), an inhibitor of the alternative complement pathway, and by limiting classical pathway activation ("serum-resistance"). We utilized CMP salts of six additional natural or synthetic NulOs, Neu5Gc, Neu5Gc8Me, Neu5Ac9Ac, Neu5Ac9Az, legionaminic acid (Leg5Ac7Ac) and pseudaminic acid (Pse5Ac7Ac), to define structural requirements of Sia-mediated serum-resistance. While all NulOs except Pse5Ac7Ac were incorporated into the LNnT-LOS, only Neu5Gc incorporation yielded high-level serum-resistance and FH binding that was comparable to Neu5Ac, whereas Neu5Ac9Az and Leg5Ac7Ac incorporation left bacteria fully serum-sensitive and did not enhance FH binding. Neu5Ac9Ac and Neu5Gc8Me rendered bacteria resistant only to low serum concentrations. While serum-resistance mediated by Neu5Ac was associated with classical pathway inhibition (decreased IgG binding and C4 deposition), Leg5Ac7Ac and Neu5Ac9Az incorporation did not inhibit the classical pathway. Remarkably, CMP-Neu5Ac9Az and CMP-Leg5Ac7Ac each prevented serum-resistance despite a 100-fold molar excess of CMP-Neu5Ac in growth media. The concomitant presence of Leg5Ac7Ac and Neu5Ac on LOS resulted in uninhibited classical pathway activation. Surprisingly, despite near-maximal FH binding in this instance, the alternative pathway was not regulated and factor Bb remained associated with bacteria. Intravaginal administration of CMP-Leg5Ac7Ac to BALB/c mice infected with gonorrhea (including a multidrug-resistant isolate) reduced clearance times and infection burden. Bacteria recovered from CMP-Leg5Ac7Ac-treated mice were sensitive to human complement ex vivo, simulating in vitro findings. These data reveal critical roles for the Sia exocyclic side-chain in gonococcal serum-resistance. Such CMP-NulO analogs may provide a novel therapeutic strategy against the global threat of multidrug-resistant gonorrhea.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1553-7366
1553-7374
Relation: https://doaj.org/toc/1553-7366; https://doaj.org/toc/1553-7374
DOI: 10.1371/journal.ppat.1005290
URL الوصول: https://doaj.org/article/89c70c9cf5024b6cb742598babff7c2c
رقم الأكسشن: edsdoj.89c70c9cf5024b6cb742598babff7c2c
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:15537366
15537374
DOI:10.1371/journal.ppat.1005290