دورية أكاديمية

Dihydroartemisinin modulated arachidonic acid metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2

التفاصيل البيبلوغرافية
العنوان: Dihydroartemisinin modulated arachidonic acid metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2
المؤلفون: Yu Xue, Junlan Lu, Yiwei Liu, Yuting Gao, Yi Gong, Yanguang Yang, Yajun Xiong, Xinli Shi
المصدر: Heliyon, Vol 10, Iss 13, Pp e33370- (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
المجموعة: LCC:Science (General)
LCC:Social sciences (General)
مصطلحات موضوعية: Dihydroartemisinin, YAP1, Arachidonic acid metabolism, COX-2, 5-LOX, Liver inflammation, Science (General), Q1-390, Social sciences (General), H1-99
الوصف: Background: Dihydroartemisinin (DHA), a derivative of Artemisia annua, has been shown to possess anti-inflammatory properties. Besides, Yes-associated protein 1 (YAP1) plays a crucial role in maintaining liver homeostasis. Methods: This study used Yap1Flox/Flox, Albumin-Cre mice with hepatocyte-specific Yap1 knockout (referred to as Yap1LKO) and their control mice (Yap1Flox/Flox, referred to as Yap1Flox). The effect of Yap1 on lipid metabolism homeostasis was investigated through non-targeted metabolomic analysis of mouse liver. Subsequently, DHA was administered to Yap1LKO mice to assess its potential as a treatment. Liver pathology was evaluated via H&E staining, and the levels of AST, ALT, and TG were quantified using biochemical assays. The contents of arachidonic acid (AA), prostaglandin E1 (PGE1), and leukotrienes (LT) in the liver were measured using ELISA, while the protein expressions of PLIN2, 5-lipoxygenase (5-LOX), and cyclooxygenase-2 (COX-2) were analyzed through IHC staining. Results: Hepatocyte-specific Yap1 knockout activated the AA metabolic pathway, resulting in increased elevated levels of AA, PGE1, and LT levels, along with inflammatory cytokine infiltration. DHA mitigated the elevation of metabolites such as PGE1 and LT caused by the AA metabolic pathway activation by down-regulating the levels of COX-2 and 5-LOX in the liver of Yap1LKO mice. Moreover, it alleviated the accumulation of lipid vacuoles and reduced triglyceride (TG) and perilipin-2 (PLIN2) levels in the liver of Yap1LKO mice. Conclusions: Excessively low YAP1 expression induces liver inflammation and disturbances in lipid metabolism, whereas DHA modulated AA metabolism and mitigated liver inflammation by inhibiting the activation of 5-LOX and COX-2.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2405-8440
Relation: http://www.sciencedirect.com/science/article/pii/S2405844024094015; https://doaj.org/toc/2405-8440
DOI: 10.1016/j.heliyon.2024.e33370
URL الوصول: https://doaj.org/article/8cf4b85a41564042b98d5f1645624f6a
رقم الأكسشن: edsdoj.8cf4b85a41564042b98d5f1645624f6a
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:24058440
DOI:10.1016/j.heliyon.2024.e33370