دورية أكاديمية

Network pharmacology and subsequent experimental validation reveal the synergistic myocardial protection mechanism of Salvia miltiorrhiza Bge. and Carthamus tinctorius L.

التفاصيل البيبلوغرافية
العنوان: Network pharmacology and subsequent experimental validation reveal the synergistic myocardial protection mechanism of Salvia miltiorrhiza Bge. and Carthamus tinctorius L.
المؤلفون: Linying Zhong, Ling Dong, Jing Sun, Jie Yang, Zhiying Yu, Ping He, Bo Zhu, Yuxin Zhu, Siyuan Li, Wenjuan Xu
المصدر: Journal of Traditional Chinese Medical Sciences, Vol 11, Iss 1, Pp 44-54 (2024)
بيانات النشر: Elsevier, 2024.
سنة النشر: 2024
المجموعة: LCC:Miscellaneous systems and treatments
مصطلحات موضوعية: S. miltiorrhiza-C. tinctorius herb pair, Compatibility mechanism, Network pharmacology, Multiple target effect, Myocardial protection, Miscellaneous systems and treatments, RZ409.7-999
الوصف: Objective: To reveal the molecular mechanism underlying the compatibility of Salvia miltiorrhiza Bge (S. miltiorrhiza, Dan Shen) and C. tinctorius L. (C. tinctorius, Hong Hua) as an herb pair through network pharmacology and subsequent experimental validation. Methods: Network pharmacology was applied to construct an active ingredient-efficacy target-disease protein network to reveal the unique regulation pattern of S. miltiorrhiza and C. tinctorius as herb pair. Molecular docking was used to verify the binding of the components of these herbs and their potential targets. An H9c2 glucose hypoxia model was used to evaluate the efficacy of the components and their synergistic effects, which were evaluated using the combination index. Western blot was performed to detect the protein expression of these targets. Results: Network pharmacology analysis revealed 5 pathways and 8 core targets of S. miltiorrhiza and C. tinctorius in myocardial protection. Five of the core targets were enriched in the hypoxia-inducible factor-1 (HIF-1) signaling pathway. S. miltiorrhiza-C. tinctorius achieved vascular tone mainly by regulating the target genes of the HIF-1 pathway. As an upstream gene of the HIF-1 pathway, STAT3 can be activated by the active ingredients cryptotanshinone (Ctan), salvianolic acid B (Sal. B), and myricetin (Myric). Cell experiments revealed that Myric, Sal. B, and Ctan also exhibited synergistic myocardial protective activity. Molecular docking verified the strong binding of Myric, Sal. B, and Ctan to STAT3. Western blot further showed that the active ingredients synergistically upregulated the protein expression of STAT3. Conclusion: The pharmacodynamic transmission analysis revealed that the active ingredients of S. miltiorrhiza and C. tinctorius can synergistically resist ischemia through various targets and pathways. This study provides a methodological reference for interpreting traditional Chinese medicine compatibility.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 2095-7548
Relation: http://www.sciencedirect.com/science/article/pii/S2095754823000741; https://doaj.org/toc/2095-7548
DOI: 10.1016/j.jtcms.2023.11.003
URL الوصول: https://doaj.org/article/8df78ddd007c42c789b3c254a0e82a28
رقم الأكسشن: edsdoj.8df78ddd007c42c789b3c254a0e82a28
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:20957548
DOI:10.1016/j.jtcms.2023.11.003