دورية أكاديمية

Targeting Melanoma-Associated Fibroblasts (MAFs) with Activated γδ (Vδ2) T Cells: An In Vitro Cytotoxicity Model

التفاصيل البيبلوغرافية
العنوان: Targeting Melanoma-Associated Fibroblasts (MAFs) with Activated γδ (Vδ2) T Cells: An In Vitro Cytotoxicity Model
المؤلفون: Anna Hajdara, Uğur Çakır, Barbara Érsek, Pálma Silló, Balázs Széky, Gábor Barna, Shaaban Faqi, Miklós Gyöngy, Sarolta Kárpáti, Krisztián Németh, Balázs Mayer
المصدر: International Journal of Molecular Sciences, Vol 24, Iss 16, p 12893 (2023)
بيانات النشر: MDPI AG, 2023.
سنة النشر: 2023
المجموعة: LCC:Biology (General)
LCC:Chemistry
مصطلحات موضوعية: γδ T cells, melanoma-associated fibroblasts, zoledronic acid, melanoma, tumor microenvironment, cancer, Biology (General), QH301-705.5, Chemistry, QD1-999
الوصف: The tumor microenvironment (TME) has gained considerable scientific attention by playing a role in immunosuppression and tumorigenesis. Besides tumor cells, TME is composed of various other cell types, including cancer-associated fibroblasts (CAFs or MAFs when referring to melanoma-derived CAFs) and tumor-infiltrating lymphocytes (TILs), a subpopulation of which is labeled as γδ T cells. Since the current anti-cancer therapies using γδ T cells in various cancers have exhibited mixed treatment responses, to better understand the γδ T cell biology in melanoma, our research group aimed to investigate whether activated γδ T cells are capable of killing MAFs. To answer this question, we set up an in vitro platform using freshly isolated Vδ2-type γδ T cells and cultured MAFs that were biobanked from our melanoma patients. This study proved that the addition of zoledronic acid (1–2.5 µM) to the γδ T cells was necessary to drive MAFs into apoptosis. The MAF cytotoxicity of γδ T cells was further enhanced by using the stimulatory clone 20.1 of anti-BTN3A1 antibody but was reduced when anti-TCR γδ or anti-BTN2A1 antibodies were used. Since the administration of zoledronic acid is safe and tolerable in humans, our results provide further data for future clinical studies on the treatment of melanoma.
نوع الوثيقة: article
وصف الملف: electronic resource
اللغة: English
تدمد: 1422-0067
1661-6596
Relation: https://www.mdpi.com/1422-0067/24/16/12893; https://doaj.org/toc/1661-6596; https://doaj.org/toc/1422-0067
DOI: 10.3390/ijms241612893
URL الوصول: https://doaj.org/article/8f4debce47d948e4983eeb43ecf97d98
رقم الأكسشن: edsdoj.8f4debce47d948e4983eeb43ecf97d98
قاعدة البيانات: Directory of Open Access Journals
الوصف
تدمد:14220067
16616596
DOI:10.3390/ijms241612893